
1

  WINTER/SPRING 1992                                                                                             Volume 4 No. 2-3

"Any society that is alive is a society with a
history."

Vaclav Havel
WELCOME TO THE WONDERFUL WORLD

OF COMPUTERS vs
PLANT CLOSURES GM STYLE
4 Years of Amateur Computerist

(Editor's Note: With this issue the Amateur Computerist
begins its 5th year of publication. Also, we are includ-
ing in this issue, a complete index of back issues.)
   February 11, 1988 was the first issue of the Amateur
Computerist. The issue was "dedicated to the Flint Sit
Down pioneers on the victory of their battle to win
industrial unionism 51 years ago." ("Dedication", vol I,
no 1)
   In our first issue, we wrote: "There was an effort by
administrators of the UAW-Ford program at the Dear-
born Engine Plant to kill interest in computers and
computer programming. We want to keep interest alive
because computers are the future." ("Introduction", vol
I, no 1)
   One UAW pioneer, Jack Palmer, in summing up the
heritage the sitdowners were passing on, wrote: "Each
generation has to solve its own problems. The sit-down
generation solved the problem of organization. The
postwar (W.W.II-ed) generation solved the problem of
pensions and inflation. Not entirely, but a good start was
begun. The present generation is faced with the

Table of Contents

Computers Vs Plant Closures . . . . . . . . . . . . . . . .   1
Amateur Computerist Index (5 year) . . . . . . . . . . .   5
Problem Corner . . . . . . . . . . . . . . . . . . . . . . . . . . .   6
Union Forever . . . . . . . . . . . . . . . . . . . . . . . . . . . .   6
Letter To The Editor . . . . . . . . . . . . . . . . . . . . . . .   6
Letters to Amateur Computerist . . . . . . . . . . . . . . .   7
Letter to Editor of Utne Reader . . . . . . . . . . . . . . .   8
Review from the :PERIPHERAL . . . . . . . . . . . . .   8
Tribute: Modern Computer Pioneer . . . . . . . . . . . .   9
Interview with Staff Member . . . . . . . . . . . . . . . . .  10
One Line Program. . . . . . . . . . . . . . . . . . . . . . . . .  13
Computers For The People . . . . . . . . . . . . . . . . . .  14
Pascal Program . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17

 greatest problems of all. They are Automation, Peace
and Politics." (from the Searchlight, newspaper of
UAW Local 659, Flint, MI, April 21, 1960, p.2, quoted
in "Dedication", vol. I, no. 1). The Amateur
Computerist is an effort to carry forward the torch
passed on by the sitdowners - the need to solve the
problem of automation.
   The welcoming of this newsletter by Floyd
Hoke-Miller, a pioneer of the Flint Sitdown Strike,
demonstrated that there was a continuum between the
Sitdown generation and the current generation. In his
article, "Dawn of A New Era," Floyd wrote, "From the
Great Wall to the Great Pyramid, from the hieroglyph-
ics to the screen of the computer, mankind is still
progressing. So make the new born science, that has
given us the computer for the amateur and not as a
prerogative of the professional to be shrouded in
secrecy from humanity, the choice of the individual, not
an election of a minority. (vol I, No. 1)
   But what has happened in the past 4 years? Has
automation in the auto industry made any headway?
Has the use of computers and computer education gone
forward?
   In February, 1992, GM announced plans for massive
layoffs and plant closings in North America. The high
price of automobiles in the U.S. shows that the problem
of automation in the auto industry has not been solved.
Instead there have been disincentives to the introduc-
tion of new technology in the U. S. auto industry
similar to those that led to the unraveling of the Soviet
Union's so called "command economy." A recent article
in Fortune Magazine (vol. 125, no. 1 January 13, 1992
"Can GM Remodel Itself?" by Alex Taylor III) de-
scribes GM's inability to utilize new technology. "For
example," Taylor writes, "GM put $77 billion into new
plants and equipment to reduce labor costs....Some
robots it acquired in the mid-1980s stand unused today.
The highly automated equipment never delivered the
promised savings because GM did not train workers
properly to use it, and... failed to design new models for
easy robot assembly."(pg 34)
   As articles in previous issues of the Amateur
Computerist have shown, investment in the U.S. auto
industry in the 1980's was not in automation that would
result in less labor being needed to produce an automo-
bile. No effort was made to reduce the price of a car so



2

more people could afford to buy cars.
   Instead, U.S. autos were downsized and redesigned,
and some of auto company profits were used to set up
so called "joint" labor-management labor relations
programs or to invest in other companies or abroad.
(See for example, "Labor Relations Hoax", vol 2, no. 4)
U.S. auto companies instituted a plethora of cost cutting
initiatives which removed the incentive for investment
in new technology. For a company to invest in modern
technology, labor saving devices must cost less than the
labor they are replacing. (See "Shorter Hours Are
Needed....", vol 2, no. 3)
   Record profits had been reported in the industry in the
1980s. Yet Wall Street analysts like Maryann Keller
sharply criticized new technology being introduced into
companies like GM. Instead GM adopted the model of
Japanese labor relations introduced into Toyota in the
1950s. This model had been developed based on re-
search that GM conducted during a 1947 labor relations
experiment which they called the "My Jobs Contest."
(See "When Will Their Walls Come Tumbling Down,"
vol 3 no. 1) Once again in the 1980s and now in the
1990s such labor relations schemes are being heralded
as the savior of a "failing General Motors" and as a
model for the rest of U.S. industry. For example, the
design for GM's new Saturn plant was premised on
GM's commitment to making labor more intense rather
than introducing labor saving technology. A spokesper-
son explains Saturn's philosophy:
   "In Saturn, we believe that to automate... does not
make good business sense. When you consider the
capital investment required for robots or other auto-
mated systems, you have to look at the variable labor
cost as an alternative. Automated equipment is limited!
On the other hand, people, if properly trained, can and
have taken costs out of an operation when given the
opportunity." (Joseph F. Malotke, Labor Law Journal,
Aug. 1985,p. 568)
   GM's Saturn model is a reversal of lessons learned
over the past 50 years about the social benefits of new
machinery. As Howard Foster, a UAW pioneer in Flint,
describing the benefits of modern machinery, explained:
"When mass production methods were introduced in the
automobile industry, the price of cars went down. This
was because the labor time on each car was greatly
reduced. Yet we auto workers got higher wages through
our union." (See "Technology: To Develop or Stagnate,"
vol 1, no 2)
   In opposition to similar labor relations experiments,
G.M. auto workers in Flint, MI, in 1947-48, success-
fully campaigned for wage increases that would match
inflation. Their battle against GM management and the
UAW International Union officialdom who opposed
such wage increases, was victorious. Thus pattern
setting wage increases known as C.O.L.A. (Cost of
Living Adjustment) and A.I.F. (Annual Improvement
Factor) were introduced into the UAW-GM contract in
1948. These wage increases made it profitable for GM
to introduce new machinery and update production

methods in GM plants.(See "Technology, to Develop or
Stagnate" vol I, no 2)
   By 1950, contract language describing the A.I.F.
affirmed the social desirability of using new technology
to decrease the labor needed to produce an auto. The
1950 GM-UAW contract granted workers a wage
increase based "on technological progress, better tools,
methods, processes and equipment and a cooperative
attitude on the part of all parties in such progress. It
further recognizes the principle that to produce more
with the same amount of human effort is a sound and
economic and social objective." (See "Upcoming
Elections and Computers," vol. I, no.3)
   Union-management jointness experiments of the
1980s are a violation of the principle "that to produce
more is a sound and economical objective." The UAW-
Ford National Development and Training Center
founded in 1982, and similar experiments at GM and
Chrysler, are labor relations experiments. Their aim is
to "promote training, retraining and development
activities," instead of "technological progress, better
tools, processes and equipment," (See "Labor Relations
Hoax," vol. 2, no. 4) 
   Because their aim is not education in high technology,
there was a battle at the Dearborn Engine Plant over the
cancellation of computer programming classes. UAW
members wrote: "How can UAW members be trained
in high technology by cutting computer classes out... we
sent letters everywhere. We are tired of being denied
benefits we're entitled to. We are tired of being shuffled
from one person to another to cover up who we're
fighting...we can't sit back and let happen at the Rouge
what has happened at GM - the wholesale closing of
plants...WE NEED AN INVESTIGATION INTO
WHAT IS GOING ON IN THE UAW FORD PRO-
GRAM at the Dearborn Engine Plant. (See "When Will
Their Walls Come Down, vol. 3, no. 1)
   In a subsequent issue of the Amateur Computerist,
Floyd Hoke-Miller contributed articles explaining why
there is more thinking needed among those who do the
work of the society. "We, as the working class," he
wrote, "are the `low men on the totem pole' or like
Atlas ̀ bearing the world on our shoulders'." (See "Pass
the Profits, Please," vol. 1, no. 2) He championed the
need for fewer hours of work to have any benefit from
new technology and reminded workers that they are still
working at least the same 8 hour day "gained by a hard
struggle of the transportation unions prior to WWI."
(Ibid., See also "Shorter Hours are Needed for Comput-
ers to Benefit Labor", vol 2, no. 3)
   The problem of the 1990s is similar to the problem of
the early post W.W.II years - how to utilize significant
new technological developments to make life better for
the people of the society. Large scale industry needs to
be under some form of social control and strict regula-
tion for technological progress to serve the society.
   The birth of the personal computer in 1974 and its
development and evolution into the 1990s has put the
promise of a better world on the horizon for people in



3

the U.S. and around the world. At the computer classes
at the Ford Rouge Plant, before the programming
classes were cancelled to make way for the labor
relations experiments that replaced them, one auto
worker wrote: "Welcome to the Wonderful World of the
Computer." The cancelling of those classes in 1987 has
made clear that that wonderful world cannot be gained
by going backward to ever more labor intensive produc-
tion, (i.e. speed up), less and less manufacturing capac-
ity (shortages), and ever increasing prices. This is the
economic program that U.S. corporations and the U.S.
government are promoting in Eastern Europe and the
result is massive human hardship and economic disloca-
tion. This economic program will result in the same
economic dislocations in the U.S. economy as are
currently plaguing Eastern Europe.
   Thus once again, as in the immediate post WWII
period, there are serious economic problems in the U.S.
and the world. There is a need to have auto workers and
others, particularly those who work in large scale
industry, consider and debate the economic problems of
our times. History has shown that this is the only way
that solutions which lead the society forward can be
found. Prohibitions against workers writing in their
local union newspapers to prevent public criticisms of
trade union officials or policies, as exist in the UAW,
need to be overturned. (See for example Convention
Proceedings of 1951 UAW Convention and UAW
Public Review decisions like No. 888, Bier vs Local
Union 2500 Executive Board, UAW, and No. 238, Plyer
vs Local 599 (1961))
   As Carl Johnson, a UAW pioneer explained, auto
workers are capable of solving the problems facing
them if they have access to organs of free discussion.
Johnson wrote: "If local union publications...provide the
ranks with a freer discussion which alone can prepare
the ranks for the fight which is sure to be plenty tough,
then we need not worry too much, for American labor
proved in '36 and '37 that it can move fast and furiously
when it knows where to go."(Carl Johnson, "Only More
Democracy Can Save Democracy," Feb. 1, 1945, The
Searchlight, UAW Local 659, Flint)
   Describing the important role to be filled by an
uncensored labor press, he wrote,"If the Labor press
does not try to give Labor the whole truth, where will
Labor get it? This, of course, raises the question: Who
is right about Labor's destiny? Certainly we can't rely on
the capitalist press to tell us, for it is obvious that their
interest is the opposite of Labor's interest. But who,
from the ranks of Labor? Let them all speak -- that's
what Free Speech was intended for! Let them all present
their view in a forum. From that the reader will have a
fair chance to decide." (Ibid., Oct. 29, 1949)
   Once again, in 1992, there is the need for access to the
uncensored local union newspaper. This tradition was
pioneered by auto workers in Flint in the 1940's to carry
on the militant Spirit of the Sit Down Strike, the  "Spirit
of '37." This press made it possible for those who do the
work of the society to be able to analyze the current

problems and debate the way forward. This uncensored
labor press no longer exists, but computer bulletin
boards across the U.S. and the world are providing
access to uncensored discussion so the momentous
problems of our times can be debated and analyzed.  On
computer bulletin boards like Usenet News, MNET
(Ann Arbor, MI), etc., such discussion is now taking
place. (We plan to include articles describing this
important development in future issues.) Also, there is
a need for education, independent of large corporate
employers like GM or Ford, and for a press to express
a working class voice, independent, as well, of any
censorship from union officials. To this end the Ama-
teur Computerist is dedicated and we need and wel-
come your participation in helping to create this inde-
pendent voice so as to be able to gain the fruits of the
computer revolution for those who do the work of this
society.
   Floyd Hoke-Miller, a pioneer of the Flint Sitdown
Strike wrote the following poem as part of his commit-
ment to the need for an uncensored press:

 Voice of the Chevrolet Worker
by Floyd Hoke-Miller

It matters not what bossman say,
How much they rant and rave
Their Sunday suit and higher pay,
Do not exclude the grave.

***
The wage-slaves toil at their behest,
Producing only by their word
There's no denying one request,
Their voices must be heard.

***
They know quite well that banker men,
And owners of the tools
Connive with pie cards when they can,
To treat the laborers as fools.

***
Their language may not stand all
  tests,
But let them have their say
For on their backs the burden rests,
They MAKE the Chevrolet.

AMATEUR COMPUTERIST INDEX
(5 Year)

Volume 1 No 1     Feb. 1988
INTRODUCTION
DAWN  OF A NEW ERA
DEDICATION
THE WORLD OF TELECOMMUNICATIONS
TRY T HIS (GRAPHICS)
THE FUTURE BELONGS TO PRO GRAMM ERS
THE FIRST PROGRAMMER (PICTURE)



4

WHY LEARN PROGRAMMING
COVER OF PERSONAL COMPUTING (PICTURE)
COMMODORE TIPS & TRICKS

Volume 1 No 2     Jun. 1988
THE BIG MACHINE
PASS THE PROFITS, PLEASE
TECHNOLOGY: TO DEVELOP OR STAGNATE?
CARTOON BY "DOC" WILSON
SAMPLE BASIC GRAPHIC PROGRAM
TRY THIS (IBM)
THE WORLD OF TELECOM... CORRECTIONS
GERMAN VOCABULARY HELPER
PROGRAMM ING IN BASIC OR C?
CONFIGURING YOUR SYSTEM
LETTER TO THE EDITOR

Volume 1 No 3     Oct 1988
LETTER PUBLISHED IN RADIO-ELECTRONICS
RESPONSES FROM AROUN D THE COUNTRY
EDITORIAL
SAVIOR IN WAITING
HOW TO USE THE MERIT NETWORK?
VIRTUAL DRIVES & BATCH FILES
TRY THIS (EQUATION OF A STRAIGHT LINE)
AS I WAS SAYING... (WHY COM PUTERISM?)
COMPUTERS AND FREE SPEECH
LETTER TO THE EDITOR
PLANT LIFE (PICTURE)

Volume 2 No 1     Jan. 1989
RETURN TO  SANITY WITH TH E AMATEUR & THE PRO
LETTERS FROM READERS
PROBLEM CORNER
TRY T HIS FOR IBM (INPUT  NUM BER FROM  20-150)
SYSTEM  DIAGRAM  FOR QUADRAPHONIC SOUND SYS.)
RESPONSE TO OCT OBER EDITORIAL
CARTOONS (COMMODORE COUNTY)
WELCOME TO CO MM ODORE COUN TY USA
COMPUTER HACKING, A CRIME?
IBM  KEY ASSIG NM ENTS USING  THE "PROM PT"...
HISTORY OF COMPUTERS... PART I

Volume 2 No 2     Apr. 1989
WHY LEARN TO PROGRAM? (DISCUSSION)
LETTERS
TRY THIS (MESSAGE)
"SE Q" FOR IBM
AS I WAS SAYING (JOBS: HOURS AN D SENSE...)
OVERTIME AND  UNDER PAY
MAY DAY
SAMPLE B ATCH FILE
HISTORY  OF CO MPUTERS PART II

Volume 2 No 3     Summer 1989
IMPACT OF COMPUTERS ON SOCIETY: A DEBATE
LETTERS TO THE EDITOR
COCO CORNER (GRAIL QUEST-PIP)
COMM ODORE COUNTY USA (CURSOR COLOR CHANGE)
OUT OF THE HEART OF THE ABACUS...
HISTORY  OF THE COM PUT ER PART III

Volume 2 No 4     Fall 1989
LETTER FROM PROSECUTOR
OPPOSING VIEW POINT ...
LETTERS TO THE EDITOR
WANTED ALIVE (AD)
COCO CORNER (EQUATION GRAPHIN G PRG.)
TRUE HEROES
TRIGONOMETRY LESSON FOR IBM
HISTORY  OF THE COM PUT ER PART IV

Volume 3 No 1     Winter 1989
LETTER FROM EDITOR OF DETROIT NEWS
DON'T REPLICATE UAW-FORD SCHOOL
LETTERS TO EDITOR
COMMODORE COUNTY USA (CARTOON)
THE SPIRIT OF BABBAGE
COCO CORNER (POKE & PEAK)
CAD/CAM/CIM
HISTORY OF COMPUTERS PART V

Volume 3 No 2     Spring 1990
THE LABORER, YES
FLOYD HOKE-MILLER (1898-1990)
THE PICKET
IN HONOR OF LABOR'S POET LAUREATE
COMPUTER EDUCATION AND GOVERNMENT REG.
LETTER FROM SUPERINTENDENT
OPEN LETTER TO SUPERINTEND ENT  BEM IS
LETTER TO GOVERNOR
COMMODORE COUNTY U.S.A. (SHIMMERING TEXT)
C64 MUSIC DIGITIZER
IBM LABEL PROGRAM
COCO CORNER (CALORIE COUNTER)
BULLETIN BOARD NUM BERS

Volume 3 No 3     Fall 1990
WHAT CRITICISMS HAVE YOU OF THE A.C.?
TIPS AND TRICKS (IBM BOOT PROBLEM)
LETTER TO EDITOR
EDITORIAL
A COMMON MAN OF GREATNESS
COCO CORNER (CORRECTION)
EXCERPTS FORM  BBS (DISCUSSION-TRADE UNIONS)
COMM ODORE C64 RESET SWITCH
DIAGRAM #1 (FOR RESET SWITCH)

Volume 3 No 4     Winter 1990
HATS OFF TO PATRIOT
AMATEURS ARE NEEDED MORE THAN EVER
COCO CORNER (MORE POKE & PEAK)
BRINGING AUTOMATION HOME
COMPUTER BBS DISCUSSION ON THE W AR
COMPUTERS FOR THE PEOPLE: PART I

Volume 4 No 1     Fall 1991
COM PUT ERS FOR T HE PEOPLE - A HIST ORY  PART II
LETTERS TO THE EDITOR
TEN COMMANDMENTS OF GOOD NETWORKING
TRY T HIS PROGRAM (GRAPH IC "HI")
THE USSR AND THE COMPUTER
COMMAND LINE CALCULATOR
THE QU ESTION OF CENSORSHIP

PROBLEM CORNER

   I have a problem and I'm hoping that somebody can
help. I upgraded my XT compatible by installing high
density floppy drives and they work just fine, but when
I put a 360K or a 720K diskette in, it will not read it
unless I reboot. After using the low density diskettes I
must reboot again before I can use high density dis-
kettes. Is there something I can do to make the com-
puter read the floppy whatever the diskette is?

PUZZLED



5

UNION FOREVER
by Floyd Hoke-Miller

Tho' politicians come and politicians go
Let Unionism go on forever.
But vote for him whose records show
He kept the workers' cause his first endeavor.

Now has he fought for higher wages
And the thirty-hour week;
The dream through the ages
Of the lowly and the weak.

Because machines are taking powers 
That were our jobs of yesterday
But it's the same old tedious hours
With the same old lousy pay.

Letter To The Editor
(Editor's Note: The following letter by a staff member
of this newsletter was recently published in the Colum-
bia Daily Spectator in N.Y.C.)

To the Editor,
   Probably unbeknownst to many students, the rally and

entering of Low Memorial Library on Tuesday, Febru-
ary 11, 1992, was in the tradition of a glorious victory
that took place 55 years ago. On February 11, 1937,
General Motors auto workers in Flint, Michigan
emerged from the factories they had occupied, victori-
ous. As part of a long series of strikes nationwide, this
forty-four day long Sit-Down Strike won GM auto
workers the right to have the United Auto Workers
(UAW) represent them as their  bargaining agent to
GM. This was the beginning of the official recognition
of the UAW by auto manufacturers.
   The sit-in at Columbia to achieve more of a student
voice in University decision making is a poignant
reminder of the similar fight that occurred 55 years ago
in Flint, Michigan. Just as those workers fought the
auto industry for a voice, the students of Columbia are
likewise fighting to have their voice heard. By learning
more of the tradition behind the battle for democratic
rights, we shall be stronger.

Michael Hauben

Letters to Amateur Computerist

Dear Editor:
   Along with your history of computers, there is one bit
of government action your readers might find interest-
ing. In the late '50s the U.S. government had at least
three competitors in the running for a contract to design
a computer utility. The phone, the electric, the gas, and
the computer were all to be durable and available for
Americans.
   The names that took part in the design competition
were Dartmouth with its DTSS time-sharing system,
Bell Labs with the forerunner of the now popular Unix,
and MIT with Multics.
   Unix, you are all familiar with now. Dartmouth time-
sharing, last I knew, was still a basic entry level operat-
ing system running at least at GM Tech Center on a
dual big box Honeywell system.
   MIT won the contract with its Multics operating
system. General Electric won the contract to build the
iron to fit the then existing software. The GE645
computer hit the field in 1962 with absolutely no
fanfare whatever. (The government's support evapo-
rated somewhere around this time.) Multics languished
around the military and institutions for the next twenty
years. Honeywell entered the picture when the govern-
ment refused to allow GE to buy out Honeywell's
computer department. So instead they sold out to
Honeywell. Honeywell Info Systems was a poor com-
pany. The development money was non-existent. With
the financial crisis of the '70s many attempts were made
to terminate Multics. The necessary iron to run the
system was more complicated than Honeywell was
willing to spend the money to speed up, so the genera-
tion of vlsi was never developed. Honeywell Info
Systems was in big trouble in the '80s, the French



6

bought the company and it is now _Bull.
   As to software, Multics is still the undisputed king of
security, flexibility, purity of design, and ease of use
(after learning). Near what appeared to me to be the end
of its troubled history, Multics had earned the B2 level
of security from the National Security Administration.
If anyone listened to them, Multics is the only machine
any government entity is allowed to use. The main
problem with selling or describing Multics is that no
outsider has any frame of reference to it. Ford Research
Center is the largest user of Multics. Management made
a determined effort to stop development and get off
Multics when the product was scraped by Honeywell in
1985. To this day no replacement has been found to
even approximate the most basic functionality inherent
in Multics from its early days.
   The system is fully paged and segmented, gated, ring
bracketed protected and written 99.96% in PL/1. Even
most of the PL/1 compiler is written in an escalating
style of PL/1. Most big box operating systems have a
known errors file a foot thick. Multics had no known
errors. Ford did run into an upper limit in that no single
array could be larger than 1 megabyte and you could
have no more than 256K segments (programs, objects)
open at one time to a single process (the program in
control of the job flow). Locally they moved those
limits up a ways.
   When I left, two systems were in use by Ford world
wide and were as large as the iron would allow. Six
processors, 64 megabytes of memory, a sea of disk
drives and every known style of communications device
and protocol. A system, new in 1985, had cast the
ultimate computer for the world, that of, Multics hooked
at 50 megabaud to a Cray XMP.

Rick Strome
Dearborn

Multics hardware repair till 1986

Dear Sir,
   I have read in Hacktic that you make the magazine
THE AMATEUR COMPUTERIST. I don't know the
price of your magazine or what the magazine contains
therefore I have a question. What is the price of your
magazine and how can I be a member? I hope you
would answer my questions and I would appreciate it
when you send me a sample issue. I am looking forward
to receiving your reply, meanwhile hearty thanks.

Yours Truly
R.H. SMIT
THE NETHERLANDS

Open Letter to Editor of Utne Reader

(Editor's Note: This letter was sent to the editor of the
Utne Reader. It was not published.)

Dear Editor,
   Instead of pointing to important articles in the 'zine
press in "Notes from Underground" (Nov/Dec issue),
your article mis-characterizes this section of the alterna-
tive press as ̀ unconventional' and ̀ obscure'. For exam-
ple, you write:
   "There are few 'zines coming from minority or
working-class communities... proportionally fewer
women publish 'zines than men, and when they do, they
tend to be feminist or Pagan-oriented."
   I am one of the editors of a 'zine that comes from a
working class community and this 'zine is neither
`feminist' nor `Pagan-oriented'. A recently published
book, Technoculture, by Andrew Ross and Constance
Pawley, (University of Minnesota Press, 1991, p. 125)
describes our newsletter:
   "When worker education classes in computer pro-
gramming were discontinued by management at the
Ford Rouge Plant in Dearborn, Michigan, United Auto
Workers members began to publish a newsletter called
the Amateur Computerist to fill the gap. Among the
columnists and correspondents in the magazine have
been veterans of the Flint sit-down strikes who see a
clear historical continuity between the problem of labor
organization in the thirties and the problem of automa-
tion and deskilling today. Workers' computer literacy is
seen as essential not only to the demystification of the
computer and the reskilling of workers, but also to
labor's capacity to intervene in decisions about new
technologies that might result in shorter hours and thus
in `work efficiency' rather than worker efficiency."
   It would be good to have Utne Reader include worthy
reprints from 'zines like the Amateur Computerist as
this is a part of the alternative press which provides a
rarely heard voice in American society.

Sincerely, Ronda Hauben
Review from the :PERIPHERAL

ISSUE 20 FEBRUARY 1992

(Editor's Note: This review of the Amateur Computerist
appeared in an Australian computer newsletter. We are
reprinting it because of the interesting historical coinci-
dence it points out regarding the appearance of the first
Australian kit computer distributed in a popular elec-
tronics magazine.)

THE AMATEUR COMPUTERIST

   We received an exchange copy of Vol 4,No 1, for Fall
1991, from Ronda Hauben, P.O. Box 4344, Dearborn,
Mi. 48126 USA. A twelve page double column issue,
featuring how hackers gave birth to the personal com-
puter (second part of a four part series) covering
ENIAC, David Ahl and Creative Computing, the
Dartmouth Basic of Kemeny and Kurtz, Ted Nelson's
wonderful book Computer Lib, and Jonathan Titus'
Mark 8 computer in Radio Electronics. Incidently, Jim
Rowe's all TTL EDUC-8 in Electronics Australia
missed out by one month in being the first kit computer



7

circuit distributed in a popular electronics magazine,
and it was the Mark 8 which appeared first.
   OK, other articles include ten commandments on
networking (mostly Novell on PCs), a short on USSR
computers, a command line calculator in Quick C which
does trig, powers and root (about 300 lines) plus letters.
   Ronda asked by E-mail whether anyone knows of
other computer magazine editors who can be reached by
e-mail? Her address is:
   au329@cleveland.freenet.edu

( :Peripheral is available from Eric Lindsay, 6 Hillcrest
Avenue, Faulconbridge, NSW, 2776, Australia. Elec-
tronic Mail Address:
eric@zen.maths.uts.edu.au. )

Tribute to a Modern Computer Pioneer:
    Grace Hopper (1906-1992)

   A New York Times headline on January 3, 1992 read:
"Rear Adm. Grace M. Hopper Dies; Innovator in
Computers was 85." She had died at home New Year's
Day after a recent illness. Until then, Grace Hopper had
been involved with computers and computer program-
ming since 1944. As one of the pioneers of modern
computing, her life exemplifies the activities and goals
that propelled computing forward.
   Hopper joined the U.S. Navy during World War II.
Having a Ph.D. in mathematics, after Midshipman's
school, she was assigned to the Bureau of Ships Com-
putational Project at Harvard University. Her first day
at the Project, she met Howard Aiken and his new
calculating apparatus. The Mark I, as it was called, was
51 feet long, 8 feet high, 2 feet thick, weighing 4 tons.
It had three quarters of a million parts, 500 miles of
wiring and three million wire connectors. In order to
operate this first operational program controlled com-
puter made in America, rotary knob like switches had to
be set manually. Hopper was fascinated by the challenge
of such a gadget having been a tinkerer when she was a
kid. One story is told of how as a girl she dismantled
and reassembled all the family's alarm clocks. Aiken
handed her a code book and asked her to work out the
coefficients for the interpolation of the arc tangent
function to be entered into the Mark I. It was a sudden
but exciting introduction to her first computer. She was
37 years old at the time.
   Aiken helped all his colleagues deal with their new
tasks by suggesting that they read portions of Charles
Babbage's writings. Hopper appreciated the importance
of such reading. She recalled that when she was grow-
ing up, "Each summer we had to read 20 books and
write reports on them. You were educated and had some
background when you were through then. It gave us an
interest in reading and in history." Aiken also assigned
Hopper to write the first operation manual for the Mark
I which she did as well as eventually writing over 50

articles, especially on programming.
   The Mark I was the first computer to be sequentially
programmed and Hopper was at it from its beginning.
Since at the time programming essentially meant
writing out strings of numbers as switch settings,
coding, operating and plugging instructions, etc., errors
could easily be made. Also many strings of numbers
had to be repeated frequently. So the habit arose of
writing out pieces of code that were already checked
out in notebooks and passing the notebooks around to
be copied from when needed.
   During the summer of 1947 there was trouble with
the Mark II computer (successor to Mark I.) The trouble
was traced to a mechanical relay in which a moth had
been trapped and beaten to death. The body of the moth
was removed with tweezers and taped into the log book
as the cause of the problem. Grace Hopper is given
credit for coining the term "bug" for computer problems
and for the explanation to Aiken when he asked what's
holding up the numbers, that she and others were
"debugging" the machine.
   Hopper left Harvard in 1949 and joined the
Eckert-Mauchly Corporation which was working on
building its UNIVAC I. Programming for computers
like Mark I, II, III and UNIVAC I was necessarily in
full detail including at times the specification of indi-
vidual bit patterns and number strings. But many
programs contained identical subroutines or sub-pro-
grams even though the total objective of such programs
may have differed. Hopper energetically encouraged the
gathering of such subroutines into permanent subrou-
tine libraries. She also spearheaded an effort to program
computers to utilize such subroutines. The idea was to
create a program that could receive as input a set of
high level spoken language-like commands and produce
as output an integrated program made up of appropriate
subroutines. In order to create such a program, Hopper
had to overcome the prevailing prejudice that comput-
ers could do wonders at arithmetic but could not do
analytic work like programming. She and her team at
Rand Corporation succeeded at creating the A-O and
other compilers that showed the cynics were too limited
in their expectations of what computers would be able
to do.
   Also in her quest to show that the new machines were
more than number crunchers, Hopper sought to demon-
strate their analytic capabilities. One such program she
wrote was designed to take as input mathematical
functions and gave as output the derivative of such
functions. Upon seeing the program perform, one
researcher who had spent months finding the first 15
derivatives of a complicated function, insisted that
Hopper must have had some hidden person feeding the
derivatives into the computer. He felt no machine could
do in eighteen minutes what it had taken him 6 months
to do. (from Robert Slater, Portraits in Silicon, Cam-
bridge Mass, 1987)
   Hopper had succeeded in demonstrating that the
computer was basically a symbol manipulator: whether



8

the symbols were numbers, letters, words or other data
structures, was a detail for the programmer, not a
complication for the computer. She drove this home by
writing a compiler that could receive high level code
written in English, French or German. Again, someone
who saw this program in operation could not believe a
computer made in the U.S. could understand European
languages and wondered what the trick was. Based on
this work, by 1957, Hopper and her staff had created
"Flow-matic," the first computer language employing
words. (Ibid., p. 225)
   Hopper's work on "Flow-matic" was seminal and was
followed by other achievements such as Commercial
Translator by IBM. But Hopper and others saw a danger
in the prospect of having many different languages. She
was, therefore, part of the process of creating COBOL,
an easy to read machine-independent language not
identified with any specific computer manufacturer.
There were those who denounced COBOL because of
its flaws and a rumor spread that it was dead. But
COBOL has in fact, like BASIC, opened the door to a
significantly large universe of users and it is still in use
today 30 years after its introduction. Her work in
support of COBOL was part of Hopper's campaign for
standards for languages, architectures, data structures
and networks, standards set for the use of all and not by
any dominant firm.
   From 1944 until her death New Year's Day 1992,
Grace Hopper spent her life pushing the use of comput-
ers forward and also spreading that use. She especially
enjoyed the opportunity to challenge young people to
explore and develop the most infinite possibilities she
saw inherent in computer technology. Her understand-
ing was that we are today just "at the very beginning of
the mass use of the computer. We haven't even begun to
exploit its potential." (Marguerite Zientara, The History
of Computing, A Biographical Portrait of the Visionar-
ies Who Shaped the Destiny of the Computer Industry,
Framingham, 1981, p. 53)

Interview with Staff Member Michael Hauben on
the Occasion of the 10th Anniversary of the Personal
Computer

Part I

(Editor's Note: This interview was conducted on August
11, 1991. It has been edited.)
   Ronda: Tomorrow is the 10th anniversary of the
introduction of the IBM personal computer on August
12, 1981. Also, one of our staff members, Michael
Hauben, is leaving Michigan to go to college in N.Y.
Therefore, it seemed an appropriate time to look back
on the past 10 years and to review how the introduction
of the personal computer has affected our lives. Michael
is now 18. In 1981 he was 8 years old and already
involved with computers. Michael is not only one of the
beneficiaries of the computer revolution. The computer

revolution was carried out, not so much by companies
like IBM, but more importantly, by computer hobbyists
like Michael Hauben. Thus in honor of the computer
hobbyists, who gave birth to and developed the per-
sonal computer, we would like to review some of your
experiences, Michael, with the computer. 
   Bill: How did you get started with computers?
   Michael: The first place I really saw computers was
at an exhibit in Toronto over 10 years ago. There was a
robot that was like the 4 axes machine that auto work-
ers use. They also had a computer exhibit. I don't
remember what kind of computer was on display but
they were just a bunch of computers running different
kinds of programs set up there at the Canadian National
Exhibit. That really peaked my interest somehow.
   When I was 8 (in 1981), I took a computer class at
Schoolcraft Community College, in what was called the
Kids College. It was part of what they called the TAG
(Talented and Gifted) Program. The teacher's name was
Mrs. Brown. We learned on the Apple II+'s. The first
day of class, Mrs. Brown lifted the top of the APPLE
and said, "There, that's all there is to it, There's nothing
to be afraid of." That was a very good introduction to
the computer because it showed there was nothing to be
afraid of. That we could completely control it. I learned
BASIC there. I took several other classes in that pro-
gram. I think I took three. I didn't take all the BASIC
language classes offered. But I took a test that they had
for their normal BASIC college level classes and I
wound up getting three college credits for the BASIC
language class. And I didn't do so good because I ended
up only getting a B on the test. But the experience was
interesting and from then on whenever there was a
computer available I tried to use it.
   After the trip to Toronto, I always wanted to buy a
computer. There was the Texas Instruments 99/4a (TI
99/4a) and I don't remember how much it cost, but it
was expensive. There was the Timex Sinclair 1000 (TS
1000) and that was much cheaper. My family and I had
seen Sinclair computers in England when we visited.
These computers could be hooked up to a normal TV
set. I saved up my money and bought a TS-1000. Using
it I more thoroughly learned BASIC. My father and I
programmed a lot in BASIC with only 2K memory. We
never seemed to run out of memory. We just played
around and tried to do lots of different things, tried
writing little games, graphics and we dabbled a little in
machine language, not a lot however. Whenever I had
the chance, whether it was summer camp or in a com-
puter store, I'd try to do something with the computer.
I learned BASIC, I learned LOGO on the TI-99/4a in
Camp, and I played around with APPLES and with
Commodore PETS. In my elementary school, there was
a terminal hooked in with the mainframe of the Dear-
born Schools. At that time there were many programs
on the mainframe. They had BASIC. They had games
like the OREGON TRAIL, etc. I subscribed to two or
three magazines for the TS-1000. I bought books, did
all the TRY THIS type of small programs. Those were



9

always fun because there would always be problems
with the programs. There would always be bugs. The
books and sample programs were exciting somehow. I
haven't found many books similar for programming on
the IBM PCs today, books that I have found exciting for
a hobbyist. And this is sad.
   Soon after I bought the TS-1000, it couldn't have been
more than a couple of years, I was trying to choose
between the TS-2068 and the Commodore 64. I think
the Commodore was more expensive. The TS-2068 had
better color, and a more developed version of BASIC.
The Commodore 64 was better in that it had a disk drive
and the TS-1000 only had a tape drive you could use.
The Commodore also had a real keyboard, while the
Timex utilized raised chicklets. I bought the TS-2068.
Then I had my first real lesson in the computer world.
Three months after I bought the TS-2068, Timex
stopped selling it and supporting it. Timex made a deal
with Commodore. There was an agreement to sell the
Sinclair in England and Europe and Commodore in the
United States. That was a shock because I thought I
made a better choice, but it turned out the better deal is
not always the best choice.
   And my father and I did programming on that, but not
really as much as we did on the TS-1000. It was a lot
less, even though there was the added attraction of the
color and the sound and the joystick port. And so I still
did things and I tried to pick up on things whenever I
could.
   Christmas of 1984, we bought a Sanyo MBC-550-2
which was a MS-DOS compatible, but not an IBM
compatible, machine. The operating system was IBM
compatible, but the graphics were different, the sound
was different, and the BASIC was different. The Sanyo
was a better machine for graphics, I think 640 x 400
with 4 colors if not 16. And WordStar worked. That's
why my family got it – as a wordprocessor. I learned
MS-DOS. I got more into the PC world. We subscribed
to a Sanyo magazine for a while. We went to the Sanyo
Users' Group for a while. We occasionally went to
SEMCO (Southeast Michigan Computer Organization),
but somehow that was already oriented toward business
and they weren't very interested in helping us. Then in
1985, through INACOMP, my mother won a Compaq
Portable. It was one of the earliest to come out that was
fully IBM compatible. It was a luggable portable, and it
weighed about 20 pounds, if not more. And that's how
I really got into IBM. We had a choice between a
modem and a hard drive. We got a modem. It was a
breakthrough. The hard drive seemed important but the
modem was more important. We wound up getting a
hard drive later on. With the modem, it lets you connect
to the outside world. With your own little system you'd
be like a hermit, but in connecting with the rest of the
world, it's other people's opinions, different discussions
about computers, about current events, debates about
what's going on in the world and just general BS also.
And you came into contact with people, you came into
contact with different files to use with your computer,

with what was going on with the computer scene and so
somehow it was like a replacement for a user group.
And depending upon the time, there was either a lot
going on or a little going on.
   Ronda: What do you mean?
   Michael: Well right now not many boards I know
have much debate on them. There are two that I am on.
Both of them have debates on-going. I'm sure there are
others, but I just haven't had time to look. But for a
while I was on many of the boards and at one point
many of the boards were silly contests to see who could
post the most numerous messages.
   Ronda: Do you have a sense what you were looking
for on the BBS's? You used to spend a lot of time on
them.
   Michael: Well at first I wasn't on local BBS's. Origi-
nally, I was on CompuServe.
   Bill: Free time?
   M: Well, the first two hours were free. I almost
became a Beta Tester for InfoCom through
CompuServe. I sent in the application forms. I then
received a congratulations letter, but InfoCom never
sent me any games to test. The only response was a
Christmas card. That was a soured CompuServe mem-
ory. I found some local BBS numbers listed on
CompuServe and from my father and some friends of
his from work. For a while I was mostly on Commo-
dore BBS's and not many IBM boards. But then I
started calling the IBM boards. It was new for me when
I started. Modeming was a connection to the outside
world to other people with similar interests. It was
interesting – the debates about current events. Some-
how there was the possibility for intellectual discussion
which I couldn't find elsewhere besides my parents and
a few friends like Floyd Hoke-Miller. But among my
friends at school or neighbors, there wasn't much of a
possibility.
   When we lived in East Dearborn, our next door
neighbor, Tom, had an Atari and a Commodore 64. He
shared an interest in computers with me. He was my
friend, even though there was a large age gap, because
we were both interested in computers. He let me come
over and try some things on his computer and I'd go
with him to computer stores.
   Bill: Another thing about modems you can't tell the
age. Treats you more like an equal.
   Michael: There's an anonymity. You don't know
anything about the other users. So you are more willing
to accept them. There are still first impressions. If you
act like a real idiot, people won't like you. But the full
element of first impressions is left out. And people tend
to rank you or be friends with you on how you act
online, what you speak about. It does help. You tend to
get to know the people and there isn't as much blocking.
And my first handle was Wizkid. I changed my handle
2 or 3 years ago to Sentinel. And there was one person
who signed on and said it was great knowing you. He
was one of the people who knew me as Wizkid. There
was a "Remembering the OLD Days" theme area on



10

one of the BBS's and someone said, "remember that
Wizkid." And I said, "that was me." And he said he
didn't know that. When people change their handles, it's
public but somehow people don't always realize it.
When I changed my handle, I decreased my activity.
When I decreased my activity it was because there were
just silly messages that didn't mean anything, or they
just seemed juvenile, and I don't know if that's because
the people calling were younger or they were more
juvenile. The way people accept you is based on your
maturity online and your maturity showed through more
than your age. And there was one debate where some-
one said you are just a kid. And I used to have the
handle Wizkid. But it didn't matter what your age was,
it was more how mature you were. He was trying to say
"Well you're just a kid, you can't know anything." But
he was wrong. So there is less age discrimination on the
boards.
   Ronda: Why did you decrease the time you spent on
the boards?
   Michael: I had to spend more time with school, with
friends, with my job. Whenever I used to come home
from school, I used to spend 2 or 3 hours, but then my
mom said, "We need the phone." So I didn't spend my
free time before homework on the modem. And then
with work, I wasn't even home on certain days to use the
modem.
   Ronda: But it seemed you were also a little disap-
pointed. There were user parties, but it seemed the
computer world didn't extend outside of the modem.
   Michael: It did to a certain extent, but it didn't include
everyone. Like some people were friends before. There
were modem parties where people from the boards got
together, whether it was a software swap or a party.
   Ronda: There weren't many, were there?
   Michael: Well, what happened was the main person
who had the parties was from a TAG board in Taylor.
He had his computer stolen after the 2nd or 3rd party.
So he stopped holding them. Then there were multi-user
boards. There was MNET which was a multi-user. The
general age of the users on MNet was older than on the
other single-user BBS's. And it was more serious. It was
more a UNIX board. It was a different bunch. It was not
the home but the people in school, in Ann Arbor. It
seemed like the multi-user boards made it easier to hold
parties because users could chat live one-on-one. And
when AMUSERS (a multi-user board) closed down, I
didn't get on other multi-users that were like AMUS-
ERS. Some people already were friends but you didn't
end up doing much so it was a little disappointing.
Cause it didn't seem like there was any – it didn't get
anywhere – it was just online so that was a little discon-
certing. It was disappointing because that was where I
had found more intellectual people but it didn't go
anywhere. And things like CompuServe cost a lot of
money. There's CompuServe, there's Delphi, there's
Geni, there's PC Link, there's Q-link, there's a couple of
services but they all cost money, so that's hard to deal
with. And then there are bigger boards that exist. But

they all cost money. There's the WELL. That's in
California. You also pay per hour like CompuServe. So
it's harder to be on. It's like MNet. It's the same soft-
ware as MNet. And maybe I did find it disappointing.
It used to be there would be lots of new BBS's popping
up. But they were interesting. And now there still are
lots of new BBS's popping up. But they're silly. So it's
gone downhill a little bit. And also BBS's are similar to
the CB or the Ham radio in that people voice their
opinions, or have discussions or chat or there used to be
DDial's – all they were were multi-user, people chat-
ting, but they were 300 baud so they were super slow.
Some of those you had to acquire membership. But they
were linked up across the country. There were things
called LINKS that would connect you to other DDials
around the country. So that way you could talk to
people.
   Somehow the thing about BBS's was it was the
ultimate vehicle of Free Speech, uncensored speech.
For the most part things were not censored. What you
posted was left alone. It was like everyone's Letter to
the Editor was allowed to be printed. There would be
letters debating other previous letters. Different Sys-
Ops had different rules and some would delete mes-
sages that contained profanity or were only personal
attacks or something. BBS's are the greatest form of
free speech. The problem was you needed a modem and
a computer to get into it. So it's not as free as it might
be, but compared to the newspapers, the newspapers
print what they choose, whereas on BBS's everything is
printed, everything is published. It's more of a dynamic
medium than a static medium because depending on the
board there's different forms of dealing with messages.
For example, some boards after the first 50 messages go
by, the first message is deleted, so it's a dynamic thing.
Unless somebody prints out a copy or saves it to disk,
it doesn't stay static. Like on MNet, things aren't
deleted. They are deleted when the message sys-op of
the area decides no one is interested anymore. That's
more of a choice method of deletion, than where it
deletes messages or the new one pops in, the old one
pops out and it's deleted. And even depending on what
happens, it's still an important medium.
   There was, for example, just a debate about the war
against IRAQ on BBS's. Usually you didn't see where
there was dissent. Whereas on the computer, if people
wanted to, they could debate it and there was debate
about it. A free medium. It's open access. Not closed.
It's also a field where the hobbyist still exists. There are
people who develop ways of using the modem, whether
it's different compression techniques where you can
send more and larger files quicker, or whether it's
different file protocols that send them faster over phone
lines. Those are constantly developing. That is a hobby-
ist frontier now. Maybe there are less people than when
the computer started out. But it still exists. It's a frontier
that's not closed up yet. It's not definite yet. New things
are continuing to come out. For example, higher speed
chips for the serial ports in the computer so that the



11

computer can talk to the modem at a higher speed and
everything.

To be continued in next issue

One Line Program In BASIC

10 FOR I=38 TO 255:PRINT"CHR$(";I;") =
";CHR$(I);" ";:NEXT

(Editor's Note: We welcome other one line programs
from readers.)

Computers For The People A History
Part III

   And it was indeed. "In January, 1975, six months after
the introduction of [Titus' computer-ed] the Mark-8,
Popular Electronics published the first installment of a
two-part article on a much more sophisticated computer,
the Altair 8800," writes Stan Augarten (in Bit by Bit,
NY, 1984). "The Altair was the first... full fledged
personal computer on the market." And it was available
in kit form for $395,or in assembled form for $650.
"Thousands of orders poured into MITS", the manufac-
turer of the Altair, after the article was published. The
article was featured on the front cover of the magazine:
"Project Breakthrough: World's First Minicomputer Kit
to Rival Commercial Models Altair 8800. Save over
$1000." ( p 270-273)
   The firm was overwhelmed with orders. Augarten
explains, "If you wanted to get the Altair to do some-
thing...you had to write a program in machine code and
enter it, bit by bit, via the toggle switches on the front
panel." It only had a 256-byte memory, too small to do
much with. "As a result," writes Augarten, "all you
could really do with the Altair was play with it, and one
of its first programs was a game that generated increas-
ingly complicated patterns of lights on the front panel to
be duplicated by the players." (p 274)
   What the Altair needed was an interpreter – a program
that would allow the machine's users to write programs
in a simple computer language like BASIC. Paul Allen,
was a programmer working in the Boston area. He had
been a computer hacker during his teen years. He was
strolling through Harvard Square one day when he
noticed the January, 1975 issue of Popular Electronics
on the newsstand. He bought the magazine and went to
visit his friend and fellow hacker, William Gates, who
was a freshman at Harvard. Allen is reported to have
greeted Gates waving the article in front of Gates' face
and saying "Look, it's going to happen! I told you this
was going to happen! And we're going to miss it.!" (
Paul Freiberger and Michael Swaine, Fire in the Valley,
Berkeley, 1984, p 141) Freiberger and Swaine, describe
what followed:

   "Gates had to admit that his friend was right; it sure
looked as though the ̀ something' they had been looking
for had found them. He immediately phoned MITS
[producer of the Altair-ed ], and claimed that he and his
partner had a BASIC language usable on the Altair.
When Ed Roberts [owner of MITS - ed] who had heard
a lot of such promises asked Gates when he could come
to Albuquerque to demonstrate it, Gates looked at his
childhood friend, took a deep breath, and said, `Oh, in
two or three weeks.' Gates put down the receiver,
turned to Allen and said: `I guess we should go buy a
manual.' They went straight to an electronics shop and
purchased Adam Osborne's manual on the 8080." (Ibid.,
p. 141)
   Allen and Gates had committed themselves to pro-
ducing a BASIC language for a machine they had not
yet even seen. But they were both computer hackers
from their junior high school days when they had
worked for companies looking for bugs in commercial
programs. Freiberger and Swine describe what hap-
pened next:
   "For the next few weeks, Gates and Allen worked day
and night on the BASIC. As they wrote the program,
they tried to determine the minimal features of an
acceptable BASIC.... There was no established industry
standard for BASIC or for any other software. There
was no industry. By deciding themselves what BASIC
required, Gates and Allen set a pattern for future
software development that lasted for about six years.
Instead of researching the market, the programmers
simply decided, at the outset, what to put in." (p 141 -
142)
   Freiberger and Swaine continue their description of
those significant days:
  "Both men threw themselves completely into the
project, staying up late every night programming....
They were programming half-asleep sometimes. Once
when Gates nodded off, head on the keys, he woke up
suddenly, glanced at the screen, and immediately began
typing. Paul Allen decided Bill must have been pro-
gramming in his sleep and kept right on when he
awoke." (p. 142)
   Six weeks later, Allen flew to Albuquerque with their
BASIC interpreter. On the plane, he realized they hadn't
written a program to load the language into the com-
puter. He quickly made up a program on some scrap
paper. Roberts met him at the airport and drove him to
his workplace. He loaded the program into the Altair
and it worked. Allen became MITS's software director.
Gates soon dropped out of Harvard and became a
freelance software writer. Gates and Allen later set up
the Microsoft Corporation in Bellevue, Washington,
now one of the largest software companies in the world.
   "The Altair inspired many hobbyists to design their
own computers," writes Augarten, p 276. One of these
was Stephen Wozniak. The ferment from the introduc-
tion of the Altair had led to the formation of computer
clubs all over the country, including one in California's
Silicon Valley. The atmosphere generated by the clubs



12

inspired hobbyists and hackers like Stephen Wozniak
and Steve Jobs to create and then market computers like
the Apple. Woz, as Steve Wozniak is known, explains
how the Apple was created. He bought an 8-bit micro-
processor, the 6502 from MOS technology (now part of
Commodore), and he wrote a BASIC interpreter for it.
The device wasn't as powerful as the Altair, but it was
cheaper and less complicated. Then he built a circuit
board and he and Steve Jobs set out to market it as the
Apple Computer. Later in 1977 they introduced the
Apple II with 16K of Ram for $1,195. Woz who loved
to play games had designed the computer with that
purpose in mind. The Apple II provided a commercial
personal computer that people and schools could begin
to afford. But crucial to the development of the Apple
computer and to all the other advances made during this
fruitful period in the development of the personal
computer was the role played by the Homebrew Com-
puter Club. Woz went to the first meeting, in March,
1975. About 30 people showed up. But fueled by the
excitement generated by the Altair, the club expanded
rapidly. Soon the Club had 500 members. Meetings
divided into a "random-access" period during which the
floor was thrown open to anyone who had anything to
say, and a "mapping" period when the audience broke
up into small groups devoted to common concerns.
   Lee Felsenstein is the person credited with making the
club the important gathering it became. Felsenstein had
been active in the Free Speech Movement at the Univer-
sity of California at Berkeley. He had been arrested in
1964 along with 755 other students for sitting in at the
University. He had worked on the Berkeley Barb and
the Berkeley Tribe, two newspapers of the student anti--
war movement of the 1960's.

   Lee Felsenstein, like Ted Nelson whose book Com-
puter Lib became known as the Common Sense (a la 
Tom Paine) of the Technological Revolution, was one
of a group of technological revolutionaries who were
products of the radical 1960s. "A surprising number of
them," write the authors of Fire in the Valley, "held
political views that would have shocked the local
Rotary Club and almost all had no love for IBM and the
computer establishment." (Frieberger and Swaine, p
108)
   Keith Britton, another early member of the
Homebrew Club, recalls the atmosphere prevalent
during the early days of the personal computer move-
ment. "There was a strong feeling, " he writes, "that we
were subversives. We were subverting the way the giant
corporations had run things. We were upsetting the
establishment forcing our mores into the industry. I was
amazed that we could continue to meet without people
arriving with bayonets to arrest the lot of us." (Ibid. p
104)
   Britton saw himself and the other members of the
Homebrew Club as "pivotal in an equivalent of the
industrial revolution but more profoundly important to
the human race."(ibid.,p 108)

To be continued



13

Pascal Program
Bridge_opening_bid_simulator

Uses Printer

(******************************************)
(*     Author      : Ian Carsten          *)
(*                                        *)
(*    Last Modified  : 11-18-90           *)
(*                                        *)
(* Input: menu choices 1-8 (integer),     *)
(* number or letter of card (char) and    *)
(* first letter of suit (char)            *)
(*                                        *)
(* Output: menu of options, 13-card hand, *)
(* total points of hand, and opening bid  *)
(* based on points and distribution of    *)
(* cards in hand                          *)
(*                                        *)
(* Purpose: To simulate the opening bid in*)
(* the card game of bridge as an aid in   *)
(* learning the strategy of assigning     *)
(* points and giving the opening bid      *)
(*                                        *)
(* Features: In the change card option, if*)
(* the user tries to remove a card which  *)
(* is not in the hand or tries to add a   *)
(* card which is already in the hand, then*)
(* an appropriate error message is printed*)
(* and the particular add or delete rou-  *)
(* tine is repeated until a valid card    *)
(* change is input. Further, at start-up, *)
(* since the handarray is empty, if the   *)
(* user selects menu options 2,4,5,6, or 7*)
(* an empty hand message is printed and   *)
(* the menu is presented to prevent mean- *)
(* ingless execution and/or output.       *)
(* Although this program prevents copying *)
(* an empty hand (52 ' 0 '--string3) to a *)
(* file, nonetheless, an empty hand has   *)
(* been stored under 'hand0.dat' to demon-*)
(* strate what would happen if an empty   *)
(* were stored using DOS commands and some*)
(* one then tried to read the empty hand  *)
(* into the handarray. In bidding the case*)
(* 13 <= points <= 18 and at least 5 cards*)
(* in 1 or two suits, the bid is: 1 of the*)
(* 5-card suit with the greatest number of*)
(* points. If each of 2 5-card suits have *)
(* the same number of points, then the bid*)
(* is 1 of the first 5-card suit in the   *)
(* order Spade, Heart, Diamond, Club.     *)
(* Since Givopeningbid calls Showpointsof-*)
(* hand, the bid can be used without first*)
(* getting the points                     *)
(******************************************)
{Declaration of global variables} type
    string3 = string[3];
    stringarray = array[1..4, 1..13] of
  string3;

  var
    choice : integer; {user's choice from
    menu}
    emptyhand : boolean; {emptyhand = true
    prevents meaningless output}
    card : string3; {representation of card
    in handarray}
    handarray : stringarray; {4 x 13 array
    representation of card hand}
    points : integer; {points of hand, used
    to determine bid}
    cardsinsuit : array [1..4] of integer;
    {number of cards in suit}
    pointsinsuit : array [1..4] of integer;
    {number of points in suit}
(******************************************)
(* Name : Initializearray                 *)
(*                                        *)
(* Purpose : Initialize all elements of   *)
(* handarray to the placeholder ' 0 '     *)
(* (string3)                              *)
(*                                        *)
(* Preconditions : none                   *)
(*                                        *)
(* Postconditions : all 52 elements of    *)
(* handarray are ' 0 ' (string3)          *)
(******************************************)
    procedure Initializearray(var
    handarray{input/output} :
    stringarray);
      var
        row : integer;
        col : integer;
      begin {Initializearray}
        for row := 1 to 4 do {set
        each element of handarray to
        0 (string3)}
          begin {row-loop}
            for col := 1 to 13 do
              begin {col-loop}
                handarray[row, col]
                := ' 0 ';
              end; {col-loop}
          end; {row-loop}
      end; {Initializearray}
(******************************************)
(* Name : Testforemptyhand                *)
(*                                        *)
(* Purpose : Determines if hand-          *)
(* array is empty                         *)
(*                                        *)
(* Preconditions : handarray is either    *)
(* empty (all elements are ' 0 ' ) or it  *)
(* contains 13 cards and 39 placeholding  *)
(* ' 0 '                                  *)
(*                                        *)
(* Postconditions : emptyhand (boolean) is*)
(* true if hand empty otherwise emptyhand *)
(* is false                               *)



14

(******************************************)
    procedure Testforemptyhand(hand-
    array{input} : stringarray;
     var emptyhand{output} :boolean);
      var
        row : integer;
        col : integer;
      begin
        emptyhand := true; {initial-
        ize}
        for row := 1 to 4 do
          begin {row-loop}
            for col := 1 to 13 do
              begin {col-loop}
                if handarray[row,
                col] <> ' 0 ' then
                emptyhand := false
              end; {col-loop}
          end; {row-loop}
      end; {Testforemptyhand}
(******************************************)
(* Name : Readcardandsuit                 *)
(*                                        *)
(* Purpose : reads the two characters of  *)
(* user-input card and suit which user    *)
(* wishes to delete/add                   *)
(*                                        *)
(* Preconditions : user has input card (1 *)
(* or, in the case of a '10', 2 characters*)
(* ), a space, and the first letter of the*)
(* suit, each of type char                *)
(*                                        *)
(* Postconditions : charcard and          *)
(* charsuit have been assigned the        *)
(* upper case of user-input card          *)
(* and suit respectively                  *)
(******************************************)
    procedure Readcardandsuit(var
    charcard{input/output} : char;
      var charsuit{input/output} :
      char);
      var
        space : char;
        charzero : char;
      begin
        read(charcard);
        if charcard <> '1' then
          readln(space, charsuit);
        if charcard = '1' then {user-
        input card is a '10'}
          readln(charzero, space,
          charsuit);
        charcard := upcase(charcard);
        charsuit := upcase(charsuit);
      end;
(******************************************)
(* Name : Displayhand                     *)
(*                                        *)
(* Purpose : To print the hand cur-       *)

(* rently stored in handarray, with       *)
(* rows right-justified, lowest           *)
(* card to highest from left to           *)
(* right (reverse order of array),        *)
(* row 1 = Spades, row 2 = Hearts,        *)
(* row 3 = Diamonds, and row 4 =          *)
(* Clubs                                  *)
(*                                        *)
(* Preconditions : handarray has a        *)
(* nonempty hand of 13 unique cards       *)
(* and 39 placeholders (' 0 ') each       *)
(* of type string3                        *)
(*                                        *)
(* Postconditions : the hand has          *)
(* been printed                           *)
(******************************************)
    procedure Displayhand(handarray
    {input} : stringarray);
      type
        string10 = string[10];
      var
        row  : integer;
        col  : integer;
        suit : string10;
      begin {Displayhand}
      Testforemptyhand(handarray
      {input}, emptyhand{output});
      if (not emptyhand) then
        begin {execute Displayhand--
        nonempty hand}
        for row := 1 to 4 do
          begin {row-loop}
            case row of {assign suit
             based on its row number}
            1 : suit := 'Spades    ';
            2 : suit := 'Hearts    ';
            3 : suit := 'Diamonds  ';
            4 : suit := 'Clubs     ';
            end; {case}
          write(suit);
          write(Lst, suit);
          for col := 13 downto 1 do
            begin
              if handarray[row, col]
              <> ' 0 ' then
                begin {if}
                write(handarray
                [row, col]);
                   write(Lst, hand
                   array[row, col]);
                end; {if}
            end; {col-loop}
            writeln;
            writeln(Lst);
          end; {row-loop}
        writeln;
        writeln(Lst);
      end {execute Displayhand--non-
      empty hand}



15

      else
        begin {else}
          writeln('Current hand is
          empty. Choose 1) or 3) from
          menu to ');
          writeln('get a nonempty
          hand.');
          writeln;
          writeln(Lst, 'Current hand
          is empty. Choose 1) or 3)
          from menu to ');
          writeln(Lst, 'get a non-
          empty hand.');
          writeln(Lst);
        end; {else}
      end; {Displayhand}
(******************************************)
(* Name : Convertcard                     *)
(*                                        *)
(* Purpose : Converts card and suit (char)*)
(* input by user into their string equi-  *)
(* valents. Also, it assigns the row and  *)
(* col (integer) of the card (string3) in *)
(* handarray                              *)
(*                                        *)
(* Preconditions : charcard and charsuit  *)
(* have been assigned values (char)       *)
(*                                        *)
(* Postconditions : row, col (integer),   *)
(* and card (string3) have been assigned  *)
(* values                                 *)
(******************************************)
  procedure Convertcard( charcard
  {input} : char;
     charsuit{input} : char;
        var row{output} : integer;
        var col{output} : integer;
        var card{output} : string3);
    begin {Convertcard}
      if upcase(charsuit) = 'S'
      then {assign row number based
      on suit input }
        row := 1; {by user}
      if upcase(charsuit) = 'H' then
        row := 2;
      if upcase(charsuit) = 'D' then
        row := 3;
      if upcase(charsuit) = 'C' then
        row := 4;
      if charcard = 'A' then {assign
      col number and card based on
      charcard}
        begin {input by user}
          card := ' A ';
          col := 1;
        end;
      if charcard ='K' then
        begin
          card := ' K ';

          col := 2;
        end;
      if charcard = 'Q'then
        begin
          card := ' Q ';
          col := 3;
        end;
      if charcard = 'J' then
        begin
          card := ' J ';
          col := 4;
        end;
      if charcard = '1' then
        begin
          card := '10 ';
          col := 5;
        end;
      if charcard = '9' then
        begin
          card := ' 9 ';
          col := 6;
        end;
        if charcard = '8' then
        begin
          card := ' 8 ';
          col := 7;
        end;
      if charcard = '7' then
        begin
          card := ' 7 ';
          col := 8;
        end;
      if charcard = '6' then
        begin
          card := ' 6 ';
          col := 9;
        end;
      if charcard = '5' then
        begin
          card := ' 5 ';
          col := 10;
        end;
      if charcard = '4' then
        begin
          card := ' 4 ';
          col := 11;
        end;
      if charcard = '3' then
        begin
          card := ' 3 ';
          col := 12;
        end;
      if charcard = '2' then
        begin
          card := ' 2 ';
          col := 13;
        end;
    end; {Convertcard}
(******************************************)



16

(* Name : Translate                       *)
(*                                        *)
(* Purpose : Translates cardnum (integer) *)
(* into its equivalent card (string3) and *)
(* assigns row (integer) and col (integer)*)
(* which determines its appropriate       *)
(* location in handarray                  *)
(*                                        *)
(* Preconditions : cardnum has been       *)
(* assigned an integer value from 1-52    *)
(*                                        *)
(* Postconditions : row has been assigned *)
(* an integer value from 1-4 and col has  *)
(* been assigned an integer value from 1- *)
(* 13 and card (string3) has been assigned*)
(* a value                                *)
(******************************************)
  procedure Translate(cardnum :
  integer;
     var row : integer;
     var col : integer);
    begin {Translate}
      case cardnum of {assign row
      based on cardnum}
         1..13 : row := 1;
        14..26 : row := 2;
        27..39 : row := 3;
        40..52 : row := 4;
        end; {case-assign row}
      case cardnum of {assign col and
      card based on cardnum}
         1,14,27,40 : begin
                      col  :=  1;
                      card := ' A '
                      end;
         2,15,28,41 : begin
                      col  :=  2;
                      card := ' K '
                      end;
         3,16,29,42 : begin
                      col  :=  3;
                      card := ' Q '
                      end;
         4,17,30,43 : begin
                      col  :=  4;
                      card := ' J '
                      end;
         5,18,31,44 : begin
                      col  := 5;
                      card := '10 '
                      end;
         6,19,32,45 : begin
                      col  := 6;
                      card := ' 9 '
                      end;
         7,20,33,46 : begin
                      col  := 7;
                      card := ' 8 '
                      end;

         8,21,34,47 : begin
                      col  := 8;
                      card := ' 7 '
                      end;
         9,22,35,48 : begin
                      col  := 9;
                      card := ' 6 '
                      end;
        10,23,36,49 : begin
                      col  := 10;
                      card := ' 5 '
                      end;
        11,24,37,50 : begin
                      col  := 11;
                      card := ' 4 '
                      end;
        12,25,38,51 : begin
                      col  := 12;
                      card := ' 3 '
                      end;
        13,26,39,52 : begin
                      col  := 13;
                      card := ' 2 '
                      end;
        end; {case-assign col and
        card}
    end; {Translate}
(******************************************)
(* Name : Showmenu                        *)
(*                                        *)
(* Purpose : To print a menu of options   *)
(* and prompt the user for his choice     *)
(*                                        *)
(* Preconditions : none                   *)
(*                                        *)
(* Postconditions : menu and prompt       *)
(* have been printed                      *)
(******************************************)
  procedure Showmenu;
    begin {Showmenu}
      writeln('1) Generate a random
      hand');
      writeln('2) Save the current
      hand (to a text file)');
      writeln('3) Read a hand (from a
      text file)');
      writeln('4) Change a card in
      the current hand');
      writeln('5) Display the current
      hand');
      writeln('6) Show total points
      of the hand');
      writeln('7) Give the opening
      bid with the current hand');
      writeln('8) Quit');
      writeln;
      write('Enter your choice ');
      writeln(Lst,'1) Generate a
      random hand');



17

      writeln(Lst,'2) Save the cur-
      rent hand (to a text file)');
      writeln(Lst,'3) Read a hand
      (from a text file)');
      writeln(Lst,'4) Change a card
      in the current hand');
      writeln(Lst,'5) Display the
      current hand');
      writeln(Lst,'6) Show total
      points of the hand');
      writeln(Lst,'7) Give the open-
      ing bid with the current
      hand');
      writeln(Lst,'8) Quit');
      writeln(Lst);
      write(Lst,'Enter your choice
       ');
    end; {Showmenu}
(******************************************)
(* Name : Generatehand                    *)
(*                                        *)
(* Purpose : To generate 13 unique random *)
(* integers from 1 to 52, translate them  *)
(* into string3 representing a hand of    *)
(* cards in the game of bridge and store  *)
(* the strings in in a 4 x 13 array       *)
(* representing the card hand according to*)
(* the following scheme:                  *)
(* top to bottom: row 1 = Spades, row 2 = *)
(* Hearts, row 3 = Diamonds, row 4 = Clubs*)
(* left to right: col 1 = ' A ', col 2 =  *)
(* ' K ',..., col 13 = ' 2 '. Also, all   *)
(* positions not holding card will have   *)
(* the string ' 0 ' (string3) as a        *)
(* placeholder                            *)
(*                                        *)
(* Preconditions : handarray either holds *)
(* 52 ' 0 ' placeholders or it holds 13   *)
(* cards and 39 ' 0 ' placeholders, each  *)
(* of type string3                        *)
(*                                        *)
(* Postconditions : handarray has 13      *)
(* unique cards(string3) and 39 ' 0 '     *)
(* placeholders, each of type string3     *)
(******************************************)
  procedure Generatehand(var hand-
  array : stringarray);
    type
      string10 = string[10];
    var
      colindex : integer;
      cardsinhand : integer; {number
      of cards in hand}
      inhand : boolean; {true if card
      being checked is already in
      hand}
      cardnum : integer; {random
      number of card}
      row : integer;

      col : integer;
      suit : string10;
    begin {Generatehand}
      Initializearray(handarray);
      {to ' 0 '}
      cardsinhand  := 0; {initialize
      number of cards in hand}
      while cardsinhand < 13 do
        begin {while}
          inhand := false; {reset to
          test next cardnum}
          cardnum := random(52) + 1;
          Translate(cardnum, row,
          col); {determines row, col}
          for colindex := 1 to 13 do
            begin {colindex-loop}
            if handarray[row, col-
            index] = card then
              inhand := true;
            end; {colindex-loop}
            if (not inhand) then
              begin {if-then}
                handarray[row,col] :=
                card; {add card to
                handarray}
                cardsinhand := cards
                inhand + 1;
              end; {if-then}
      end; {while}
    end; {Generatehand}
(******************************************)
(* Name : Savehandtofile                  *)
(*                                        *)
(* Purpose : saves cardhand to filename   *)
(* which user specifies just prior to save*)
(*                                        *)
(* Preconditions : card hand exists and   *)
(* may be empty or nonempty               *)
(*                                        *)
(* Postconditions : nonempty card hand in *)
(* handarray has been saved to user-input *)
(* filename                               *)
(******************************************)
  procedure Savehandtofile(handarray
  : stringarray);
   type
     string20 = string[20];
   var
     row : integer;
     col : integer;
     outfile : text;
     cardfile : string20;
    begin {Savehandtofile}
      Testforemptyhand(handarray
      {input}, emptyhand{output});
      if (not emptyhand) then
      begin {execute Savehandtofile-
      -nonempty hand}
        write('What is the name of



18

        the card file? ');
        write(Lst, 'What is the name
        of the card file? ');
        readln(cardfile);
        writeln(Lst, ' ', cardfile);
        assign(outfile, cardfile);
        rewrite(outfile);
        for row := 1 to 4 do
          begin
            for col := 1 to 13 do
              begin {col-loop}
                write(outfile, hand-
                array[row, col]);
              end; {col-loop}
            writeln(outfile);
          end; {row-loop}
        close(outfile);
      end {execute Savehandtofile--
      nonempty hand}
      else
        begin
        writeln('Current hand is
        empty. Choose 1) or 3) from
        menu to ');
        writeln('get a nonempty
        hand.');
        writeln;
        writeln(Lst, 'Current hand is
        empty. Choose 1) or 3) from
        menu to ');
        writeln(Lst, 'get a nonempty
        hand.');
        writeln(Lst);
        end;
    end; {Savehandtofile}
(******************************************)
(* Name : Readhandfromfile                *)
(*                                        *)
(* Purpose : reads hand from user-input   *)
(* filename to handarray                  *)
(*                                        *)
(* Preconditions : user-input filename    *)
(* exists and holds a card hand           *)
(*                                        *)
(* Postconditions : cardhand in filename  *)
(* has been copied to handarray           *)
(******************************************)
    procedure Readhandfromfile(var
    handarray : stringarray);
      type
        string20 = string[20];
      var
        row : integer;
        col : integer;
        outfile : text;
        cardfile : string20;
      begin {Readhandfromfile}
        write('What is the name of
        the file? ');
        write(Lst, 'What is the name
        of the file? ');
        readln(cardfile);
        write(Lst, ' ', cardfile);
        assign(outfile, cardfile);
        reset(outfile);
        for row := 1 to 4 do

          begin {row-loop}
            for col := 1 to 13 do
              begin {col-loop}
                read(outfile, hand-
                array[row, col]);
              end; {col-loop}
            readln(outfile);
          end; {row-loop}
        writeln(Lst);
        close(outfile);
        Testforemptyhand(handarray
        {input}, emptyhand{output});
        if (emptyhand) then
          begin {if-emptyhand}
            writeln('File ',cardfile,
            ' is empty. Choose 1) or
            3) (with');
            writeln('a nonempty file)
            from menu to get a non-
            empty hand.');
            writeln;
            writeln(Lst, 'File ',
            cardfile, ' is empty.
            Choose 1) or 3) (with');
            writeln(Lst, 'a nonempty
            file) from menu to get a
            nonempty hand.');
            writeln(Lst);
          end; {if-emptyhand}
      end; {Readhandfromfile}
(******************************************)
(* Name : Changecard                      *)
(*                                        *)
(* Purpose : first deletes a  userspeci-  *)
(* fied card from handarray, then adds one*)
(* to the array                           *)
(*                                        *)
(* Preconditions : handarray exists and   *)
(* may be empty or nonempty (but Change-  *)
(* card will not execute if handarray     *)
(* empty)                                 *)
(*                                        *)
(* Postconditions : handarray has a       *)
(* unique nonempty hand (if Change-       *)
(* card executed)                         *)
(******************************************)
  procedure Changecard(var handarray
  : stringarray);
    type
      string8 = string[8];
    var
      charcard    : char;
      space       : char;
      charzero    : char;
      charsuit    : char;
      row         : integer;
      col         : integer;
      inhand      : boolean;
      suit        : string8;
    begin {Changecard}
      Testforemptyhand(handarray
      {input}, emptyhand{output});
      if (not emptyhand) then
        begin {execute Changecard--
        nonempty hand}
{delete chosen card provided it is in hand}



19

          inhand := false;
          while (not inhand) do
           begin {while-not inhand}
            inhand := false;
            write('What card do you
            want to remove(card-
            <space>suit) ? ');
            write(Lst, 'What card do
            you want to remove(card-
            <space>suit) ? ');
            Readcardandsuit(charcard,
            charsuit);
            Convertcard(charcard,
            charsuit, row, col,
            card);
            case row of
              1 : suit := 'Spades';
              2 : suit := 'Hearts';
              3 : suit := 'Diamonds';
              4 : suit := 'Clubs';
              end; {case}
            writeln(Lst, card, ' ',
            charsuit);
            if (handarray[row, col] =
            card) then
            inhand := true;
            if (inhand) then
              begin {if-inhand}
                handarray[row, col]
                := ' 0 '; {delete
                card from hand}
             end {if-inhand}
        else
        begin {else}
          writeln(card, 'of ',  suit,
          ' is not in hand');
          writeln(Lst, card, 'of ', 
          suit, ' is not in hand');
        end; {else}
    end; {while-not inhand}
{add chosen card if not already in hand}
    inhand := true;
    while inhand do
      begin {while-inhand}
        inhand := true;
        write('What card do you want
        to add(card<space>suit) ? ');
        write(Lst, 'What card do you
        want to add(card<space>suit)
        ? ');
        Readcardandsuit(charcard,
        charsuit);
        Convertcard(charcard, char-
        suit, row, col, card);
        case row of
          1 : suit := 'Spades';
          2 : suit := 'Hearts';
          3 : suit := 'Diamonds';
          4 : suit := 'Clubs';
        end; {case}
        writeln(Lst, card, ' ', char-
        suit);
        if (handarray[row, col] <>
        card) then
          inhand := false;
        if (not inhand) then

          begin {if}
            handarray[row, col] :=
            card; {add card to hand}
          end {if}
        else
        begin {else}
          writeln(card, 'of ',  suit,
          ' is already in hand');
          writeln(Lst, card, 'of ', 
          suit, ' is already in
          hand');
        end; {else}
      end; {while-inhand}
      end {execute Changecard--non-
      empty hand}
      else
      begin {else}
        writeln('Current hand is
        empty. Choose 1) or 3) from
        menu to ');
        writeln('get a nonempty
        hand.');
        writeln;
        writeln(Lst, 'Current hand is
        empty. Choose 1) or 3) from
        menu to ');
        writeln(Lst, 'get a nonempty
        hand.');
        writeln(Lst);
      end; {else}
    end; {Changecard}
(******************************************)
(* Name : Showpointsofhand                *)
(*                                        *)
(* Purpose : calculates and prints the    *)
(* points of the hand                     *)
(*                                        *)
(* Preconditions : handarray has a unique *)
(* nonempty hand of card (this procedure  *)
(* will not execute with an empty hand)   *)
(*                                        *)
(* Postconditions : points (integer) have *)
(* been assigned                          *)
(******************************************)
procedure Showpointsofhand(handarray 
{input} : stringarray; var points-
{output} : integer );
  var
    row : integer;
    col : integer;
    prevpoints : integer;
    begin {Showpointsofhand}
      Testforemptyhand(handarray-
      {input}, emptyhand{output});
      if (not emptyhand) then
        begin {execute Showpoints-
        ofhand--nonempty hand}
          points := 0;
          prevpoints := 0;
          for row := 1 to 4 do
            begin {row-loop}
              cardsinsuit[row] := 0;
              for col := 1 to 13 do
                begin {col-loop}
                  if handarray[row,
                  col] = ' A ' then



20

                    points := points
                    + 4;
                  if handarray[row,
                  col] = ' K ' then
                    points := points
                    + 3;
                  if handarray[row,
                  col] = ' Q ' then
                    points := points
                    + 2;
                  if handarray[row,
                  col] = ' J ' then
                    points := points
                    +1;
                  if handarray[row,
                  col] <> ' 0 ' then
                    cardsinsuit[row]
                    := cardsinsuit-
                    [row] + 1;
                end; {col-loop}
              case cardsinsuit[row]
              of
                0 : points := points
                + 2;
                1 : points := points
                + 1;
                end; {case}
              pointsinsuit[row] :=
              points - prevpoints;
              prevpoints := points;
            end; {row-loop}
          if choice <> 7 then {choice
          = 7, points passed to
          Giveopeningbid}
            begin {if-choice <> 7}
              if points = 1 then
                begin {if-points = 1}
                  writeln(points, '
                  point');
                  writeln(Lst,
                  points, ' point');
                end {if-points = 1}
              else
              begin {else}
                writeln(points, '
                points');
                writeln(Lst, points,
                ' points');
              end; {else}
            end; {if--choice <> 7}
        end {execute Showpointsof-
        hand--nonempty hand}
      else
        begin {else}
          writeln('Current hand is
          empty. Choose 1) or 3) from
           menu to ');
          writeln('get a nonempty
          hand.');
          writeln;
          writeln(Lst, 'Current hand
          is empty. Choose 1) or 3)
          from menu to ');
          writeln(Lst, 'get a
          nonempty hand.');
          writeln(Lst);

        end; {else}
    end; {Showpointsofhand}
(******************************************)
(* Name : Giveopeningbid                  *)
(*                                        *)
(* Purpose : computes and prints the      *)
(* opening bid                            *)
(*                                        *)
(* Preconditions : handarray has a unique *)
(* nonempty hand (will not execute with an*)
(* empty hand                             *)
(*                                        *)
(* Postconditions : opening bid has       *)
(* been computed and printed              *)
(******************************************)
    procedure Giveopeningbid(var
    points : integer);
      type
        string10 = string[10];
      var
        bid : string10;
        suit : string10;
        row : integer;
        col : integer;
        rowindex : integer;
        cardsinrow : integer;
        mostcardsinsuit : integer;
        max : integer;
      begin {Giveopeningbid}
        Testforemptyhand(handarray-
        {input}, emptyhand{output});
        if (not emptyhand) then
          begin {execute Giveopening-
          bid--nonempty hand}
            Showpointsofhand(hand-
            array{input}, points-
            {output});
            mostcardsinsuit := 0;
            cardsinrow := 0;
            for row := 1 to 4 do
              begin {row-loop}
                for col := 1 to 13 do
                  begin {col-loop}
                    if handarray[row,
                    col] <> ' 0 '
                    then
                      cardsinrow :=
                      cardsinrow + 1
                  end; {col-loop}
              if cardsinrow > most-
              cardsinsuit then
                begin
                  mostcardsinsuit :=
                  cardsinrow;
                  rowindex := row
                end; {if}
                cardsinrow := 0
              end; {row-loop}
{case: causes bid to be 1 of which- }
{ever 5-card suit has highest number}
{of points. If 2 5-card suits have  }
{same number of points, then suit of}
{lowest number rowindex will be bid }
          case rowindex of
            1 : suit := 'Spade';



21

EDITORIAL STAFF
Ronda Hauben
William Rohler

Norman O. Thompson
Michael Hauben

The Amateur Computerist invites contribution of
articles, programs letters, etc. Send submissions to:
R. Hauben, P.O. Box 4344, Dearborn Mi. 48126.
Email address:
   au329@cleveland.freenet.edu    Articles can be
submitted on paper or diskette (in ASCII format)
from either IBM or Commodore machines. One
year subscription (4 issues) costs $5.00(US). Add
$2.50(US) for foreign postage. Permission is
granted to reprint any article herein, provided credit
is given.

            2 : suit := 'Heart';
            3 : suit := 'Diamond';
            4 : suit := 'Club';
            end; {case}
          if points < 13 then
            begin {bid-case 1}
              writeln('pass');
              writeln(Lst, 'pass');
            end; {bid-case 1}
          if (13 <= points) and
          (points <= 18) and (most-
          cardsinsuit >= 5) then
            begin {bid-case 2}
              max := 0;
              for row := 1 to 4 do
                begin  {row-loop}
                  if (cardsinsuit[row] >= 5)
                  then
                    begin {if}
                      if pointsinsuit[row] >
                       max then
                        begin {if}
                          max := pointsin-
                          suit[row];
                          rowindex := row;
                        end; {if}
                  case rowindex of
                    1 : suit := ' Spade ';
                    2 : suit := ' Heart ';
                    3 : suit := ' Diamond ';
                    4 : suit := ' Club ';
                    end; {case}
                  end; {if}
                end; {row-loop}
            writeln('1 ', suit);
            writeln(Lst, '1 ', suit);
            end; {bid-case 2}
          if (13 <= points) and
          (points <= 15) and (most-
          cardsinsuit < 5) then
            begin {bid-case 3}
              writeln('1 club');
              writeln(Lst, '1 club');
            end; {bid-case 3}
          if (16 <= points) and (points 
          <= 18) and (most cardsinsuit < 5)
          then begin
          {bid-case4}
              writeln('1 no trump');
              writeln(Lst, '1 no trump');
            end; {bid-case 4}
          if 18 < points then
            begin {bid-case 5}
              writeln('2 clubs');
              writeln(Lst, '2 clubs ');
            end; {bid-case 5}
      end {execute Giveopeningbid--
      nonempty hand}
      else
        begin {else}
          writeln('Current hand is empty.
          Choose 1) or 3) from menu to ');
          writeln('get a nonempty hand.');
          writeln;
          writeln(Lst, 'Current hand is
          empty. Choose 1) or 3) from

          menu to ');
          writeln(Lst, 'get a nonempty
          hand.');
          writeln(Lst);
        end; {else}
      end; {Giveopeningbid}
(******************************************)
  begin {main}
    randomize;
    choice := 0; {initialize to insure entry
    into while loop}
    Initializearray(handarray); while choice
    <> 8 do
      begin {while}
        Showmenu;
        readln(choice);
        writeln(Lst,choice);
        case choice of
          1 : Generatehand(handarray);
          2 : Savehandtofile(handarray);
          3 : Readhandfromfile(handarray);
          4 : Changecard(handarray);
          5 : Displayhand(handarray);
          6 : Showpointsofhand(handarray{in-
          put}, points{output});
          7 : Giveopeningbid(points);
        else {quit if choice is 8}
        end; {case}
      end; {while}
    end. {main}

Special Thanks to Tim Henderson for scanning the
graphics and helping to produce this newsletter. (the
Editors)


