
Page 1

 FALL 1991 Volume 4 No. 1

Computers for the People - A History
or

HOW HACKERS GAVE BIRTH TO THE
PERSONAL COMPUTER

PART II
 by Ronda Hauben

(Editor's Note: On August 12, 1991,
newspapers and magazines carried
articles honoring IBM managers or
Bill Gates for having introduced the
IBM Personal Computer 10 years ago.
But it is not these few "famous men"
who are responsible for the break-
throughs in computers that represent
the personal computer revolution. The
serialized history begun in the last
issue [vol.3 no.4] describes how
computer hackers and hobbyists forced
IBM to develop and introduce the
personal computer in 1981. The second
part of this 4 part history follows
as our effort to honor the 10th anni-
versary of the victory of these hack-
ers and hobbyists and their continu-
ing efforts to develop the personal
computer and make it available to
people.)
 The history of the invention of
the personal computer is a long one
-- beginning in the 1600's when the
first known mechanical adding machine
was built. But technology then was
not at the point where a feasible
design could be developed and pro-
duced. It was not till WWII that
technological development had given

Table of Contents

Computers for the People . . . 1
Letters to the Editor 5
Ten Commandments - Networking . 6
Try This Program 7
USSR and the Computer 7
Command Line Calculator 8
Question of Censorship 12

birth to the components that would
make a working computer possible. As
part of the war effort, the American
government was willing to provide the
large sums of money needed to develop
and build the ENIAC, the first work-
ing computer. ENIAC was a huge mon-
ster of a machine. Stan Augarten, in
his book Bit by Bit, (New York, 1984,
p.128)tracing the history of comput-
ers describes the ENIAC: "It took 2
days to set ENIAC up to carry out a
program. You did not sit down at a
computer terminal and type in in-
structions, instead you set thousands
of switches and plugged in hundreds
of cables [like the cables on an old
telephone switchboard -ed] by hand
one at a time and wiring a compli-
cated program could take months."
 The ENIAC had been developed in
1945. During the 1940's and 1950's
there were significant advances in
the capability of the computer. Yet
into the 1950's, computers were still
the exclusive domain of a few. Until
the 1960's, as Augarten points out,
"most of the computers used were
built in the ENIAC'S giant mold. Only
the largest institutions -- universi-
ties, corporations, research insti-
tutes and government agencies --
could afford them.... Big and costly,
they were the very symbols of en-
trenched and centralized power --
haughty, impersonal, inefficient and
inaccessible." (p 253)
 Why were the computers of the
early postwar WWII period inaccessi-
ble to the average person? John
Kemeny, one of the inventors of the
programming language BASIC describes
the dilemma:
 For the first two decades of the
existence of the high speed computer,
machines were so scarce and so expen-
sive that man approached the computer
the way an ancient Greek approached

Page 2

an oracle.... A man submitted his
request – then waited patiently until
it was convenient for the machine to
work out the problem. Only specially
selected acolytes were allowed to
have direct communications with the
computer. In the original mode of
using computers, known as batch pro-
cessing, hundreds of computer re-
quests were collected by the staff of
a computer center and then fed to the
machine in a batch.
(quoted in Augarten, from Kemeny's
book Man and the Computer, N.Y.,
1972, p 21)
 Digital Equipment Corporation
(DEC) introduced the first mini-com-
puter in 1963 – called the PDP-8. It
cost only a fraction of the price of
a mainframe computer, but it still
cost $18,000. And it ran only one
program at a time. (See Augarten, p
254-255, and 257.)
 By 1971, the market for the
mini-computer in businesses and uni-
versities had taken off. In that year
Intel, a semi-conductor company was
working on a chip to run a calcula-
tor. In the process they developed
the 8008 chip, which was powerful
enough to run a small computer.
 By the early 1970's, Integrated
Circuit (IC) technology had reached
the point where IC's were sophist-
icated and inexpensive enough to make
a personal computer possible. Many
computer companies, DEC and the other
large mini-computer makers, had the
resources available to develop the
personal computer. Technically the
task was not complicated, as the
logic chips or microprocessors had
been developed to the necessary
stage. But the big computer companies
were not interested.
 In the early 1970's, David Ahl, an
engineer, worked for DEC in its mar-
keting research department. The com-
pany had one half of the educational
computer market in 1973 and had $20
million in sales. Ahl moved into a
research and development group. After
some investigation, he suggested to
his superiors that there was a sub-
stantial market for small computers
in schools and homes. On May 17,
1974, Ahl, presented a plan to DEC to
develop and market small computers.
Ken Olsen, President of DEC, vetoed

the plan saying, "I can't see any
reason that anybody would want a
computer of his own." (John J. Ander-
son, "David Tells Ahl-The History of
Creative Computing", Creative Comput-
ing, Nov. 1984, p 72).
 Chris Rutkowski, writing in the 10
year anniversary issue of Creative
Computing explains that Olsen's re-
sponse was typical of corporate reac-
tion to personal computers. He
writes:
 "Computers were invented as ser-
vants of the biggest organizations
ever conceived; the superpowers and
the multinational corporations. These
groups, not exactly known for their
accurate vision of the future, sup-
ported and embraced the computer
because of its prowess at one thing,
number crunching and between censuses
and actuarial tables, these groups
had lots of numbers to crunch.
(Ibid,"The Computer as a Creative
Tool", p 97)
 Rutkowski goes on, "So specialized
were the capabilities and so exorbi-
tant the price of these earliest
computers that some nameless sage at
UNIVAC predicted that the total world
market for computers was five." The
writer observes, "How this number was
arrived at remains unclear today, but
the magnitude of his error was soon
clear." (Ibid.)
 Nancy Stern, in her book From
ENIAC TO UNIVAC also discusses the
reasons large U.S. companies failed
to develop computer technology. She
suggests that it was not just the
narrowness of their vision of the
future. She writes:
 "Such major industrial firms as
NCR, RCA, and IBM were engaged in
small scale research on the feasibil-
ity of electronic counters and elec-
tronic digital computers in the early
1940s. During the late 1940s, these
organizations demonstrated an inter-
est in the work of Eckert and Mauchly
[developers of the first post WWII
computers like ENIAC and UNIVAC - ed]
and in other groups designing comput-
ers. Such firms did not, however,
undertake major computer projects for
commercial purposes during the imme-
diate postwar period."
 (From ENIAC to UNIVAC, Bedford, Ma.,
1981, p173)

Page 3

 She goes on to quote from an arti-
cle by Henry Tropp "The Effervescent
Years" (IEEE Spectrum, Feb. 1974, p
76) where Tropp shows how big corpo-
rations refused to develop high tech-
nology. Tropp describes what hap-
pened:
 “The National Cash Register Com-
pany offers a particularly intriguing
industrial ‘might have been.’ NCR
actually had an electronic computing
device constructed during the late
1930s. It was a high-speed arithmetic
machine which could add, subtract and
multiply electronically, and presum-
ably this machine could have become
the first commercial electronic com-
puter had the company wished to pio-
neer in this field. However, NCR
management was not interested in
automatic computing per se, but only
in improving its existing line of
office equipment.”
(quoted in Stern, Ibid.)
 Tropp cites other examples of
major industrial firms that failed to
take any initiative in developing
electronic devices:
 "If one examines the environment at
major U.S. corporations during the
1940s, there is a striking lack of
interest in any aspect of automatic
computing. I have yet to see a publi-
cation from that period that reveals
an interest in putting research and
development funds into finding better
ways of doing automatic computation.
At Bell Laboratories, for instance,
Stibitz's Model I Calculator might
well have been the last in the series
if it hadn't been for the pressure of
wartime needs and the accompanying
government support. IBM was similarly
uninterested in advancing the com-
puter art.... The company seems to
have been primarily interested in
improving existing products and
building a strong patent position for
possible future applications. I have
been able to discern no evidence of a
vision of IBM – or any other corpora-
tion -- in those days that was compa-
rable to that held by Aiken,
Maunchly, Stibitz, Atanasoff, J.
Presper Eckert or Wallace Eckert"
[pioneers in the 1940s in developing
computers - ed].
 Nancy Stern observes that "IBM's
failure to undertake any research

projects in this area is particularly
surprising, since it was the major
manufacturer of calculating equipment
and was the company which would be
most affected by the availability of
commercial computers." She attributes
this anti-high technology policy to
the highest levels of IBM management,
the Chairman of IBM, Tom Watson, Sr.
She explains, "Yet no work on elec-
tronic digital computers was under-
taken by that organization in the
1940s despite interoffice memos writ-
ten by IBM engineers recommending
such work." Two of the inventors of
the ENIAC AND UNIVAC computers,
Eckert and Mauchly desperately needed
money to continue their pioneering
work. They went to IBM and asked for
financial assistance. Scientists at
IBM, Stern notes, were impressed by
the men and their work and recom-
mended the support. "But," she re-
ports, "word came uptown from galac-
tic headquarters to brush them off.
There was [to be - ed], in the words
of Watson's decision relayed to the
Laboratory, no reasonable interaction
between Eckert-Mauchly, and IBM."
(Ibid.)
 Gordon Bell, who worked at DEC,
and helped develop the first
mini-computer, the PDP-8, and the
first commercial time-sharing system,
drew a similar conclusion. The indus-
try, he decided, "was unconcerned
about the `science' of computing."
 Meanwhile, in 1963, a decision was
made at Dartmouth College to make an
introduction to computers a part of
the Liberal Arts curriculum.
 Two Dartmouth professors, John
Kemeny and Thomas Kurtz, devised what
is known as the Dartmouth Time-Shar-
ing System (DTSS) so students could
get access to a computer. And they
designed the computer language BASIC
so that novices could learn to pro-
gram. Kemeny recalling those years,
writes:"We designed a few simple
instructions for the lay user to
enable him to write his first few
computer programs with very little
training." (Man and the Computer, p
21)
 He goes on to explain the ratio-
nale used to develop the programming
language BASIC (Beginner's All--
Purpose Symbolic Instructional Code.)

Page 4

 "The availability of a language as
simple as BASIC has made the learning
task so simple that computers have
come within the power of every intel-
ligent human being, and time-sharing
has made it possible to have direct
communication between man and mach-
ine." (p 32)
 Thanks to Kemeny and Kurtz, a
generation of college students grew
up in the 1960's who were exposed to
computers through BASIC and time
sharing and who thus had a realistic
assessment of the potential of the
computer and of its limitations.
 Ted Nelson was one of these con-
verts. In 1974 he published a book
Computer Lib. He had to publish it
himself. In his introduction to Com-
puter Lib, he wrote: "This book is a
measure of desperation, so serious
and abysmal is the public sense of
confusion and ignorance. Anything
with buttons or lights can be palmed
off on the layman as a computer.
There are so many different things,
and their differences are so impor-
tant; yet to the lay public they are
lumped together as `computer stuff,'
indistinct and beyond understanding
or criticism. It's as if people
couldn't tell apart camera from expo-
sure meter or tripod, or car from
truck or tollbooth. This book is
therefore devoted to the premise that
EVERYBODY SHOULD UNDERSTAND COMPUT-
ERS. It is intended to fill a crying
need. Lots of everyday people have
asked me where they can learn about
computers, and I have had to say
nowhere."
 Nelson describes the mystification
of computer knowledge. "Knowledge is
power and so it tends to be hoarded,"
he writes, "Experts in any field
rarely want people to understand what
they do, and generally enjoy putting
people down. Thus if we say that the
use of computers is dominated by a
priesthood, people who spatter you
with unintelligible answers and seem
unwilling to give you straight ones,
it is not that they are different in
this respect from any other profes-
sion. Doctors, lawyers and construc-
tion engineers are the same
way."(Ibid.) Nelson maintains this
stranglehold on computer knowledge
had to be broken. He writes:

 "But computers are very special, and
we have to deal with them everywhere,
and this effectively gives the com-
puter priesthood a stranglehold on
the operation of all large organiza-
tions, of government bureaux, and
anything else that they run. Members
of Congress are now complaining about
control of information by the com-
puter people, that they cannot get
the information even though it's on
computers. Next to this it seems a
small matter that in ordinary compa-
nies `untrained' personnel can't get
straight questions answered by com-
puter people; but it's the same phe-
nomenon."(ibid.)
 He makes his plea:
"It is imperative for many reasons
that the appalling gap between public
and computer insider be closed. As
the saying goes, war is too important
to be left to the generals. Guardian-
ship of the computer can no longer be
left to a priesthood. I see this as
just one example of the creeping evil
of Professionalism, the control of
aspects of society by cliques of
insiders. There may be some chance,
though that Professionalism can be
turned around. Doctors, for example,
are being told that they no longer
own people's bodies. And this book
may suggest to some computer profes-
sionals that their position should
not be as sacrosanct as they have
thought, either.(ibid.)
 The refusal of major corporations
to develop personal computers, meant
the task fell to those with a demo-
cratic vision -- to computer hobby-
ists and hackers. For example, Jona-
than Titus was a hobbyist who had
developed a keen interest in elec-
tronics and in tinkering and had a
sense of the importance of the micro-
processor. (There were previous at-
tempts to create a home computer by
folks like Nat Watsworth with his
Scelbi-8H, or Nelson Winkless, with
his Digi-Comp I. See Stephen Gray,
"The Early Days", Creative Computing,
Nov. 1984, p 12)
 When Intel introduced the 8-bit
8008 chip, Titus studied it and real-
ized that it was powerful enough to
run a small computer. (See Augarten,
p 269). He ordered the 8008 from
Intel. The chip cost him $120. With

Page 5

it he received a free applications
manual complete with circuit
diagrams. He wanted to share his
design with other hobbyists. He de-
cided to write a letter to two well
known hobbyist magazines Popular
Electronics and Radio Electronics
asking if they were interested in
running an article on Mark-8, his
homemade computer. Popular Electron-
ics wasn't interested, but Larry
Stickler, the Editor of Radio Elec-
tronics was excited by the proposal
and flew out to Blacksburg, Va. to
see Titus's computer. (See Augarten,
Bit by Bit, p 269)
 "The machine was about the size of
a large breadbox," writes
Augarten,"....programs had to be
entered one bit at a time by flipping
a set of toggle switches on the face
of the machine." And programs were
lost forever when the machine was
shut off. But the machine worked.
(Augarten, p 269)
 The article announcing the Mark-8
computer by Titus ran in the July,
1974 issue of Radio-Electronics. The
article was sketchy. If you wanted
more information you could send away
for a 48-page instruction manual
written by Titus and published by
Radio-Electronics for $5.50. You
could also buy the circuit boards for
$47.50 from Technique, Inc. a small
firm in Englewood, New Jersey. All
the other components had to be bought
from Intel or other companies. "Alto-
gether, the Mark-8 cost about $250 to
build -- in addition to a lot of time
and trouble," explains Augarten. (p
270)
 But to the 10,000 people who sent
for the instruction book or the 2500
who also sent for the circuit boards
all the complications were not impor-
tant.
 A significant event had occurred.
The grassroots movement to make com-
puters available to the American
people had exploded. The world was to
be significantly changed.
 As Ted Nelson had predicted when
he published Computer Lib, "I am
`publishing' this book myself, in its
first draft form, to test its viabil-
ity, to see how mad the computer
people get, and to see if there is as
much hunger to understand computers,

among all you Folks Out There as I
think." Nelson realized, "The com-
puter field is its own exploding
universe."

(to be continued)

Letters to the Editor

Dear R. Hauben:
 I'm interested in reading a copy
of the Amateur Computerist. I saw it
mentioned by Andrew Ross in his
essay, "Hacking Away at the Counter-
culture," collected in his (and
Constance Penley's) recent anthology,
Technoculture.
 I'll be happy to send a fee or
donation for the newsletter, either
before or after you send me a copy--
just let me know how much to send.
 I'm interested in your newsletter
because I'm a computer programmer
committed to sharing my knowledge
with my users, in the belief that
such knowledge can lead to a general
empowerment. So I'm always interested
in hearing about instances of similar
activity.

Pam Rosenthal

(Editor's Note: Following is the
excerpt from Technoculture, By Con-
stance Penley & Andrew Ross, Editors,
Cultural Politics, Vol 3, University
of Minnesota Press, p124.)
 "A good example is the crucial
role of worker technoliteracy in the
struggle of labor against automation
and deskilling. When worker education
classes in computer programming were
discontinued by management at the
Ford Rouge plant in Dearborn, Michi-
gan, United Auto Workers members
began to publish a newsletter called
the Amateur Computerist to fill the
gap. Among the columnist and corre-
spondents in the magazine have been
veterans of the Flint sit-down
strikes who see a clear historical
continuity between the problem of
labor organization in the thirties
and the problem of automation and
deskilling today. Workers' computer
literacy is seen as essential not
only to the demystification of the
computer and the reskilling of work-
ers, but also to labor's capacity to
intervene in decisions about new
technologies that might result in

Page 6

shorter hours and thus in 'work effi-
ciency' rather than worker effi-
ciency."

To the Editor:
 "A Brain for Robots has been cre-
ated on Amiga Library Disk 411.
Join/Stop/Expose the Underground
Movement towards a Cybernetic Econ-
omy: Republish this message."

Authur T. Murray

TEN COMMANDMENTS OF GOOD NETWORKING
by Novell Network Sysop Mel White

Networks are, simultaneously, one of
the biggest blessings for a company
and one of its biggest headaches. At
their best, they provide inexpensive
solutions for a workgroup to share
critical files. At their worst, they
are cranky fortifications of high
tech electronics with mysterious
commands and obscure problems that
only a technical junkie with a mas-
ochistic streak (also known as your
Local Area Network Sysop) could love.
Here are ten simple rules that will
help you get along with your Network
and that deity in power, the Sysop.
Although these commandments are
slanted towards users of Novell
Netware, they will apply to most
types of networks.

I.-- THOU SHALT USE THE NETWORK MENUS
UNLESS THOU HATH PERMISSION TO DO
OTHERWISE.
 It's terribly tempting for someone
who has some familiarity with DOS to
drop to the operating system and try
to do things on a network that one
does on a PC. But networks aren't
PC's. And although Network DOS is
similar to PC DOS, system architec-
ture and memory setup can toss some
wrenches in the best-laid plans of
the DOS user. Even the simple change
directory DOS command done in a
lighthearted moment can toss you into
an area where the network doesn't
recognize any of your commands-- or
even your existence. And the only way
out of there will be to reboot your
workstation.

II.-- THOU SHALT NOT PUT SINGLE USER
SOFTWARE ON THE SYSTEM.

 Single user software may be written
in machine code that makes calls to
specific memory hooks or hardware
addresses. But Netware DOS has some
different interrupt calls and its
hard drive is structured differently
than the standard PC's. Direct calls
to specific addresses can cause your
network station or the network itself
to lock up. In one instance, a single
user version of a word processor
started writing its code all over the
Network's operating system files.
Needless to say, Sysop was Not
Amused. To be safe, use only network
versions of your software.

III.-- THOU SHALT NOT USE PC TOOLS OR
NORTON UTILITIES OR ANY PC DISK UTIL-
ITIES ON THE NETWORK.
 The network's drive has a different
organization structure and logical
architecture. And while these are
wonderful packages, they expect to
find the File Allocation Tables and
other information in specific loca-
tions. Unfortunately, these are not
the places where Netware is keeping
these files (by the way, this is why
software with the SUPERLOCK type of
copy protection security system won't
install on your network).

IV.-- IN BUYING HARDWARE AND SOFTWARE
FOR THE NETWORK, REMEMBER THAT THY
VENDOR KNOWETH BEST.
 The cheapest strategy really is to
go with the vendor's recommendation
and have them set up under their
warranty. Networks can be squirrely
beasts and nothing can be more frus-
trating than trying to put a third
party PC card on a network and trying
to make it work. This particularly
comes into play in situations where
you're trying to connect the network
to several other networks or main-
frames. Stick with what the support
staff knows will work. Time is money
in a business environment and it's
not cost-effective to bring a network
to a complete halt while you work for
three weeks trying to get a board
manufactured by HomeBilt Hardware to
work with your network software.

V.-- BE COURTEOUS ABOUT DATA.
 These are shared files and shared
resources. Be aware of the limita-

Page 7

tions of your system. It won't let
you update John Dillinger's record at
the same time another user is trying
to update it. If several people need
to be working in the file at the same
time, check to see that no one is
working on the same data.

VI.-- THOU SHALT NOT SURPRISE THE
SYSOP WITH NEW SOFTWARE.
 You may be madly in love with the
latest version of WordWhapper, but if
it's not supposed to go on the net-
work, then Sysop will not appreciate
finding it there. Sysop will erase
the files and send two large guys
from the Personnel Department to
explain to you that Sysop does not
appreciate having the network's disk
space eaten up by unauthorized soft-
ware.

VII.-- THOU SHALT NOT DISCONNECT THY
WORKSTATION FROM THE NETWORK BY THY-
SELF.
 When you share resources through a
network, it means that you lose con-
trol of a lot of your individual
options. Moving your workstation is
one of them. This has a tendency to
either lock up portions of the net-
work or to crash the network com-
pletely; conditions which tend to
irritate your local Sysop. Work-
stations can, of course, can be moved
around but it must be done properly
and that means involving the Sysop
and the folks who did the cabling for
the network. Remember, that because
of your building's architecture, you
may not be able to put the machine
where you would like it. The ambience
of your office furniture arrangement
may therefore suffer--unless you're a
vice president. In that case, they'll
rearrange the building itself to
please you.

VIII.-- LEARN TO USE THY NETWORK
UTILITIES.
 Sysops will teach you to use the
"Kill That Print Job" menu. This is
an important one to learn. Sysops get
snorky if interrupted in the middle
of a technical glitch with a request
to kill off a print job.

IX.-- THY SYSOP AND THY SUPERVISOR
MUST BOTH BE TOLD YOUR PASSWORD.

 On occasions, you may be out of the
office and the Sysop may have need to
test a piece of software from your
login id. If the Deities In Charge Of
The Network don't have your password,
they will change your password (on
the Novell system, the password isn't
displayed under any of the
Supervisor's query menus).

X.-- REMEMBER THAT NETWORKING IS
SHARING RESOURCES.
 Play nicely.

Try This Program

10 FOR T = 1 TO 2
20 GOSUB 201
30 NEXT T
40 FOR X = 3 TO 10
50 GOSUB 200
60 NEXT X
70 FOR L = 11 TO 12
80 PRINT "*******************"
TAB(30);"***"
90 NEXT L
100 FOR H = 13 TO 20
110 GOSUB 200
120 NEXT H
130 FOR B = 21 TO 22
140 GOSUB 201
150 NEXT B
199 END
200 PRINT " ***"," ***"," ***"
201 PRINT "*****","*****","*****"
210 RETURN
(Editor's note for IBM computers:
When you are ready to run this,
press control printscreen and run
this from GWBasic on your printer.
Press control printscreen to turn
off printing to the printer.)

The USSR and the Computer

 Since the 1970's, micro-chips and
computers have put on the world's
social agenda the promise of a better
life. From the simple level like
microwave ovens that turn themselves
on and off to computer aided medicine
and computer controlled robotic manu-
facturing, the computer age promises
fewer needed hours of human labor
both on and off the job. This promise
is known world wide and desired uni-
versally especially by working peo-
ple.

Page 8

 In the 1980's, especially after
their space ships Phobos I and II
failed, scientist and engineers in
the Soviet Union realized technologi-
cal innovation and development was
hampered by the lack of uncensored
communication and by the slow process
of getting innovations tried and
adopted. Thus, to the pressure of
people wanting the computer promised
better life, was added the demands of
scientists and engineers for more
channels of communication and for the
multiplicity of ideas and directions.
These had so far been stifled by the
one party ideology and practice. The
result was a greater openness called
Glasnost.
 The great test of the Glasnost
pressured for by the existence of
computers, was the attempted
intra-governmental coup in the Soviet
Union in late August 1991. Realizing
that openness was being attacked and
thus so was the chance to gain from
the computer revolution, the working
people and students of Moscow and
Leningrad rallied to protect their
gains. Newspapers that the coup lead-
ers attempted to censor, defiantly
distributed calls for resistance and
the defense of the uncensored ex-
change of information. Leaflets were
printed with personal computers and
passed out in subway stations and on
the streets. These papers were ea-
gerly taken up and distributed by
people on their way to work. Politi-
cians like Boris Yeltsin in Russia,
sensing the strength of the people,
championed resistance to the coup and
it was toppled.
 The computer revolution held out
enough of a promise that the people
of the Soviet Union rose successfully
to defend it. The next challenge to
the people of Central and Eastern
Europe as well as the rest of the
world is to realize that computer and
cybernetic development requires the
types of innovation, hacking and
diversity characteristic only of
amateurs in close touch with each
other. This requires the continuing
struggle for uncensored and widely
distributed communication. The gov-
ernments and profiteers of every
society want the advantages of the
computer revolution for their own

purposes. So, in every society the
promise of computer improvements will
remain a dream for workers unless
there continues to be the fight for
openness, support for innovation and
the challenging of previous author-
ity. This makes the defense of ama-
teur computing and innovating worth
the support of all working and pro-
gressive people.

by Jay Hauben

Command Line Calculator
 CCalc.C is a Quick C variation of
Michael J Mefford's Compute.Com which
appeared in the May 29 1990 issue of
PC Magazine. I liked the concept but
wanted more functions such as the
elementary trigs, powers & roots.
 This program will operate as a
command line calculator by entering
the following command: CCalc <ex-
pression> <return>
Examples: CCalc 24 + 2
 CCalc 24 + (tan50) / 2
 CCalc -24 + ((TAN(50)) / 2)
 CCalc 2 + -3
 CCalc 2 + (-3)
 As in Mr Mefford's original, CCalc
makes available the results of the
last calculation in the form of the
variable "x". Unlike the original,
the program references a small (8
byte) file called ccalc.dat which
will be created in the home directory
of ccalc.exe if it does not exist. To
use this variable, substitute it
where needed in the command line,
such as:
ccalc 24 + xor ccalc 24 + (X)
 Spaces, upper/lower case and added
parentheses cause no harm, but the
parents should be balanced, and, of
course, follow the accepted rules of
mathematical precedence.
 Basically, the program parses a
command string assembled from the
user input. Spaces in input cause no
harm as the individual arguments are
concatenated into one string. This
string is used by Rewrite() as the
source a modified version called
achWorkstr. The changes made here
include changing all uppercase to
lowercase, replacing any trig refer-
ences such as Sin by a hi-ascii sub-
stitute (char 224 thru 229), replac-
ing any {} or [] by (), checking

Page 9

parentheses balance, and substituting
a placeholder for any references to
the variable X.
 Getparents() is recursively called
to identify and send to Parse() the
substring consisting of the inner-
most, last set of parents for subse-
quent evaluation by eval_string().
After each string is evaluated, it's
value is stored in adReal[] and a
placeholder consisting of an Upper-
case Ascii char is placed in the
string. After all parentheses are
evaluated in this fashion, the com-
plete string is sent to Parse() for
one final go-round. Any time during
the evaluation process that an upper-
case (A..Z) character is encountered,
the corresponding value is used from
the adReal array in calculations.
 Error checking is modest, limited
to divide by zero and parent balance
but the program is relatively robust
and does not hang even when sent some
nonsense like CCALC 3+-*/sin20. Also,
I have attempted to use a variation
of the "Hungarian Notation" as pre-
sented by Charles Petzold in his
column in the March 14 1989 edition
of PCMag. I find it useful when the
pointers and arrays begin to over-
whelm me. The program name can be
changed (at least in MS-DOS 3.x) and
the "dat" file will change to suit
and stay in the directory where the
"exe" lives.
 Comments, suggestions appreciated
to Larry Ritzert, CIS 72317,1061

/* CCalc.c 1.01 Command-line calcula-
tor like PC Magazine's "Compute.Com".
Larry Ritzert, 28686 Swan Island,
Grosse Ile, MI, 48138, May 31 1990
 This Quick C variation offers
several additional math functions
such as common trigs, powers & roots
& float mod. Also creates (if neces-
sary) a tiny data file in the direc-
tory where CC.exe is located for
storage & retrieval of previous re-
sult. */

#include<stdio.h>
#include<string.h>
#include<math.h>
#include<ctype.h>
#include<stdlib.h>

#define PI 3.14159265359
#define deg(x) 180*x/PI

#define rad(x) PI*x/180
#define MAXSTR 256

char *pchInstr, achWorkstr[MAXSTR];
char *pchStr_Begin, *pchStr_End;
 /* global begin & end of string */
double adReal[26] = {0.0};
 /* to store intermediate calcs */
double dValue, *pdVal;
int iR_Ctr = 0, iWS_Len, iPerformed;
FILE *fp;

main(int argc, char *argv[])
{ int iCtr;
 char achPathf[_MAX_PATH],
 achDrive[_MAX_DRIVE],
 achDir[_MAX_DIR], achFName[_MAX_FNAME],
 achExt[_MAX_EXT];
 pdVal = &dValue;

 if (argc < 2)
 { say_hi();
 help();
 exit(0); }
 else /* gather the command line string */
 { say_hi();
 pchInstr = argv[1];
 for (iCtr = 2; iCtr < argc; iCtr++)
 strcat(pchInstr, argv[iCtr]); }
 iCtr = 0;
 strcpy(achPathf, argv[0]);
 /* find "exe" file and make "dat" file */
 _splitpath(achPathf, achDrive, achDir,
 achFName, achExt);
 _makepath(achPathf, achDrive, achDir,
 achFName, "dat");
 if((fp = fopen(achPathf, "r+b")) ==
 NULL)
 fprintf(stderr, "\n\aCan't read Data
 File, \"x\" invalid");
 else
 if(!(iCtr = fread(pdVal,sizeof(double),
 1, fp)))
 fprintf(stderr, "\n\aBad Read -Data
 File, \"x\" invalid");

 rewrite_string();
 getparents();
 pchStr_Begin = achWorkstr;
 pchStr_End = pchStr_Begin + iWS_Len;
 parse(pchStr_Begin,pchStr_End);
 printf("\n%s = %7.7f",pchInstr,
 adReal[iR_Ctr-1]);
 *pdVal = adReal[iR_Ctr - 1];
 rewind(fp);
 if (!(iCtr = fwrite(pdVal,
 sizeof(double),1,fp)))
 fprintf(stderr, "\n\aERROR - No write
 of \"x\" to data file");
 fcloseall(); }

rewrite_string()
 /* cleans up orig input, spaces it *
 * rewrite curly, square brackets */

Page 10

{ char *pchLocalWS;
 char *apchTrig[6] =
 {"tan","sin","cos","atn","asn","acs"};
 int iCtr, iLefts = 0, iRights = 0;

 strcpy(achWorkstr, pchInstr);
 strlwr(achWorkstr);
 for (iCtr = 0; iCtr < 6;iCtr++)
 /* replace "sin", etc w/ hi-ascii char */
 { while(pchLocalWS = strstr(achWorkstr,
 apchTrig[iCtr]))
 { memset(pchLocalWS, 224 + iCtr, 1);
 /* ch 224 = tan */
 memmove(pchLocalWS+1, pchLocalWS+3,
 strlen(achWorkstr) - 2); } }
 pchLocalWS = achWorkstr;
 while (*pchLocalWS != '\0')
 /* dump squares & curlies */
 { if (*pchLocalWS == '{' || *pchLocalWS ==
 '[' || *pchLocalWS == '(')
 { memset(pchLocalWS,'(',1);
 iLefts++; }
 if (*pchLocalWS == '}' || *pchLocalWS
 == ']' || *pchLocalWS == ')')
 { memset(pchLocalWS,')',1);
 iRights++; }
 pchLocalWS++; }
 if (iLefts != iRights)
 /* check for parent balance */
 { fprintf(stderr,"\n\a%s Unbalanced
 Parentheses", pchInstr);
 exit(0); }
 while (pchLocalWS = strchr(achWorkstr, 'x'))
 /* using prev answer? */
 { adReal[iR_Ctr] = dValue;
 /* assign value to float array member...*/
 memset(pchLocalWS,iR_Ctr + 'A',1);
 /* create a placeholder in string */
 iR_Ctr++; } }

getparents()
 /*-----recursively called to evaluate each set of
 parents---*
 --starting with the last, innermost set----/
{ char *pchLocal;
 iWS_Len = strlen(achWorkstr);
 if((pchLocal = strrchr(achWorkstr,'('))
 == NULL)
 return(0);
 /* there are no (longer) any parentheses */
 else
 pchStr_Begin = pchLocal;
 pchStr_End = strchr(achWorkstr +
 (pchStr_Begin-achWorkstr), ')');
 *pchStr_Begin = ' ';
 /* dump this set of parents */
 *pchStr_End = ' ';
 parse(pchStr_Begin,pchStr_End);
 /* send substring prev in parents */
 getparents();
 /* keep checking for parents */ }

parse(char *pchStr_Begin,char *pchStr_End)
 /* check each (sub)string in *

 * math precedence order & from left *
 * to right for math operators *
 * store intermediate results in *
 * "real" array */
{ char ch, *pchOper_Pos;
 int iIndx, iStrLn = pchStr_End -
 pchStr_Begin, iTest;
 iPerformed = 0;
 iTest = 0;
 for(iIndx = 224; iIndx < 230; iIndx++)
 while((pchOper_Pos =
 memchr(pchStr_Begin, iIndx, iStrLn)))
 eval_string(pchOper_Pos);
 while ((pchOper_Pos =
 memchr(pchStr_Begin, ' '̂, iStrLn)))
 eval_string(pchOper_Pos);
 for (iIndx = 0; iIndx <= iStrLn; iIndx++)
 if (((ch = *(pchStr_Begin + iIndx)) ==
 '*') || (ch == '/'))
 { pchOper_Pos = pchStr_Begin + iIndx;
 eval_string(pchOper_Pos);
 iIndx = 0; }
 while ((pchOper_Pos =
 memchr(pchStr_Begin, '%', iStrLn)))
 eval_string(pchOper_Pos);
 for (iIndx = 0; iIndx <= iStrLn; iIndx++)
 if (((ch = *(pchStr_Begin + iIndx)) ==
 '+') || (ch == '-'))
 { pchOper_Pos = pchStr_Begin + iIndx;
 eval_string(pchOper_Pos);
 iIndx = 0; }
 if (!(iPerformed))
 /* no operator or function in string */
 { for(iIndx = 0; iIndx < 26;iIndx++)
 if (strchr(pchStr_Begin,65 +
 iIndx))
 { iTest = 1;
 /* don't convert lonesome placeholder */
 break; }
 if (!(iTest))
 { adReal[iR_Ctr] =
 atof(pchStr_Begin);
 memset(pchStr_Begin, iR_Ctr + 65,
 1);
 iR_Ctr++;
 memset(pchStr_Begin + 1, ' ',
 iStrLn - 1); } }
 return(0); }

eval_string(char *pchOper_Pos)
{ int iTest, iCh, bUnary;
 unsigned char uchOperator;
 char *pchLeft, *pchRight;
 double dFirst, dSecond;

 pchLeft = pchOper_Pos;
 /* set left pointer and... */
 /* backtrack until something found */
 uchOperator = *pchOper_Pos;
 if((uchOperator == '+') || (uchOperator
 == '-')
 && ((*(pchOper_Pos + 1) == '+') ||
 (*(pchOper_Pos + 1) == '-')))
 bUnary = 1; /* two +- in row, assume

Page 11

 unary */

 while (!(is_math_operator(*(pchLeft-1)))
 && (pchLeft > pchStr_Begin))
 pchLeft = pchLeft - 1;

 while (isspace(*pchLeft))
 /* in case over shot into space */
 pchLeft = pchLeft + 1;

 iCh = (int)*pchLeft;

 if (pchLeft == pchOper_Pos)
 dFirst = 0.0;
 /* got to start, must be unary value */
 else
 if (isupper(*pchLeft))
 /* is upper, must be placeholder */
 dFirst = adReal[iCh - 65];
 /* use it's stored value */
 else
 dFirst = atof(pchLeft);
 /* else convert the substring */

 pchRight = pchOper_Pos + 1;
 /* now to the right */

 iCh = *(pchRight);
 while ((isspace(iCh)) && (pchRight <
 pchStr_End))
 iCh = *(pchRight + 1);

 if (isupper(iCh))
 /* now for second operand */
 dSecond = adReal[iCh - 65];
 else
 dSecond = atof(pchOper_Pos + 1);
 if (bUnary)
 pchRight = pchRight + 1;
 while (!(is_math_operator(*pchRight)) &&
 !(isspace(*pchRight))
 && (pchRight < pchStr_End))
 pchRight = pchRight + 1;
 /* find right end of operand */

 memset(pchLeft, iR_Ctr + 65, 1);
 /* create a placeholder */
 iTest = pchRight - pchLeft;
 /* ...insert it in the string */
 memset(pchLeft + 1, ' ', iTest-1);
 /* overwrite w/ spaces */
 store_value(uchOperator, dFirst,
 dSecond); }

store_value(unsigned char uchOper, double
 dFirst, double dSecond)
{ /* store a float value for each placeholder created in
the string */
 int iTest;
 switch (uchOper)
 { case '+': adReal[iR_Ctr++] = dFirst
 + dSecond; break;
 case '-': adReal[iR_Ctr++] = dFirst
 - dSecond; break;

 case '*': adReal[iR_Ctr++] = dFirst
 * dSecond; break;
 case ' '̂: adReal[iR_Ctr++] =
 pow(dFirst,dSecond); break;
 case '%': adReal[iR_Ctr++] =
 fmod(dFirst,dSecond); break;
 case 224: adReal[iR_Ctr++] =
 tan(rad(dSecond)); break;
 case 225: adReal[iR_Ctr++]
 =sin(rad(dSecond)); break;
 case 226: adReal[iR_Ctr++] =
 cos(rad(dSecond)); break;
 case 227: adReal[iR_Ctr++] =
 deg(atan(dSecond)); break;
 case 228: adReal[iR_Ctr++] =
 deg(asin(dSecond)); break;
 case 229: adReal[iR_Ctr++] =
 deg(acos(dSecond)); break;
 case '/': if (dSecond == 0) {
 printf("\n\a%s Divide by Zero
 Error",pchInstr);
 exit(0); }
 else
 adReal[iR_Ctr++] = dFirst /
 dSecond; break;
 default : {
 printf("\n\aUndefined Error");
 exit(0); } }
 iPerformed = 1; }

int is_math_operator(char ch)
 /* Pascal's "set" would be nice */
{ int iCtr;
 char legals[] = {'+','-','*','/',' '̂,'%','"','ß',''',
 'B','E','F'};

 for(iCtr = 0; iCtr < 12; iCtr++)
 if(ch == legals[iCtr])
 return(2);
 return(0); }

say_hi()
{ printf("\nC-Calc 1.01 by L W Ritzert,
 Grosse Ile Mi CIS 72317,1061"); }

help()
{ printf("\nSyntax: C-CALC <arithmetic
 expression>"
 "\nOperators: x () {} [] + - * / % ^
 tan sin cos atn asn acs 0..9"
 "\n\t'x' = previous result"
 "\n\t'%%' = modulus operator for
 integer or real value"
 "\n\t' '̂ = power operator, use
 fraction for root"
 "\n\tSpaces, upper/lower case
 optional"
 "\n\tAngles in degrees\n"); }
 /******CHANGES*********************
 JUN 3 90 Changed fopen(fp) to r"r+b"
 to correct bug in file read (binary).
 Also modified fread (fp) verify, both
 chgs in MAIN() */

Page 12

EDITORIAL STAFF
Ronda Hauben

William Rohler
Norman O. Thompson

The Amateur Computerist invites
contribution of articles, pro-
grams etc. Send submissions to:
R. Hauben P.O. Box 4344,
Dearborn, Mi. 48126. Articles can
be submitted on paper or disk in
ASCII format, (IBM or Commodore.)
One year subscription (4 issues)
costs $5.00(US). Add $2.50 for
foreign postage.

The Question of Censorship
by Michael Hauben and Ronda Hauben

(Editor's Note: This article is
available to readers censored or
uncensored. If your newsletter con-
tains the censored version, send a
Stamped Self Addressed Envelope to R.
Hauben, P.O. Box 4344, Dearborn, MI
48126 and the uncensored version will
be mailed to you.)
 It is hard to believe censorship
of the Amateur Computerist is now
happening when the Amateur Comput-
erist was originally started to op-
pose censorship. The article itself
began with a discussion of censorship
and government censorship.
 Censorship is a tool that reminds
me of the past. Censorship is a form
that squelches opinions. Of all pub-
lications, I would never conceive the
Amateur Computerist could censor. In
our previous issue, vol. 3 no. 4,
there was an article titled "Computer
BBS Discussion On The War." The
members of the Amateur Computerist
agreed to print it because it was
representative of the debate about
the war against Iraq on computer
BBS's, and it presented many differ-
ent views and opinions. However,
there was one discrepancy. One half
of the staff members of the Amateur
Computerist objected to the included
profanity. This led to an internal
discussion. The members of Amateur
Computerist in opposition to any form
of censorship tried to have a debate
where we presented our side of non-
censoring of ideas.
 The side that censored the article
identified certain words in the dis-
cussions that they considered profane
and since the Amateur Computerist is
available for all ages to read, they
felt we shouldn't print those "ob-
scene" words. The side opposed to
censorship felt that the words were-
n't being used as obscenities, but
rather to convey ideas or to recount
what had occurred. To omit these
words thus was to censor the ideas or
the details of what was being de-
scribed.
 Finally it was agreed that the
article would be published, but with
the words in question asterisked out.
However, a note was included indicat-
ing a difference of opinion concern-

ing the censorship and this article
was the result. We at the Amateur
Computerist would still appreciate
our reader's opinions on this subject
matter. So feel free to write.
 The references in question are as
follows:
 8. Well, I listened to some of the
speakers, and I listened to the
a****** standing next to me.
19. They all said they were p*****
off and worried about the protests...
Their result will just freak the
troops out, they think they will be
spit at. This is such b*******.
20. ...this is the same b******* that
protestors heard in the 60's & 70's.
21. Read the accounts of the troops
who returned home to cries of "baby-
killing m************".
22. ...they would not have been
called baby-killing m************.
37. ...and she got in a lot of s***
for it too
39. ...she got is s*** from the
Hayden/Fonda crowd
 Where m*********** is used, the
people aren't saying it, they are
repeating it as part of an idea.
Elsewhere people are expressing them-
selves and for the most part it is
small compared to the whole discus-
sion. We didn't highlight the profan-
ity until we censor it with the as-
terisks. When I first read the arti-
cle I didn't even notice the profan-
ity.

