
Page 1

 Winter/Spring 1994 Celebrating 25 Years of UNIX Volume 6 No 1

"I believe all significant software movements start at the grassroots level. UNIX, after all, was not developed by the President
of AT&T." Kouichi Kishida, UNIX Review, Feb., 1987

UNIX and Computer Science
by Ronda Hauben

[Editor's Note: This year, 1994, is the 25th anniversary of the
invention of UNIX in 1969 at Bell Labs. The following is
from a "Work In Progress" introduced at the USENIX
Summer 1993 Conference in Cincinnati, Ohio. This article is
intended as a contribution to a discussion about the sig-
nificance of the UNIX breakthrough and the lessons to be
learned from it for making the next step forward.]
 The Multics collaboration (1964-1968) had been created to
"show that general-purpose, multiuser, timesharing systems
were viable." Based on the results of research gained at MIT
using the MIT Compatible Time-Sharing System (CTSS),
AT&T and GE agreed to work with MIT to build a "new
hardware, a new operating system, a new file system, and a
new user interface." Though the project proceeded slowly
and it took years to develop Multics, Doug Comer, a Profes-
sor of Computer Science at Purdue University, explains that
"fundamental issues were uncovered" in the process of the
research on Multics, "new approaches were explored and

[continued on page 2]

Table of Contents

UNIX and Computer Science Page 1
An Interview with John Lions Page 1
An Interview with Berkley Tague Page 7
On the 25th Anniversary of UNIX Page 11
Usenet News: The Poor Man's ARPAnet . . Page 14
What the Net Means to Me Page 17
Plumbing The Depths Of UNIX Page 18
Using UNIX Tools . Page 20
C Program . Page 23
New Net Book . Page 24
The Linux Movement Page 24
The Ten Commandments for C Page 27
May Day in the Morning Page 29
Free Software Foundation Page 29

Spreading UNIX Around the World:
An Interview with John Lions

[Editor's Note: Looking through some magazines in a local
university library, I came upon back issues of UNIX Review
from the mid 1980's. In these issues were articles by or inter-
views with several of the pioneers who developed UNIX. As
part of my research for a paper about the history and devel-
opment of the early days of UNIX, I felt it would be helpful
to be able to ask some of these pioneers additional questions
based on the events and developments described in the UNIX
Review Interviews.
 Following is an interview conducted via E-mail with John
Lions, who wrote A Commentary on the UNIX Operating
System describing Version 6 UNIX to accompany the "UNIX
Operating System Source Code Level 6" for the students in
his operating systems class at the University of New South
Wales in Australia. Lions' important book provided some of
the earliest printed commentary and documentation of the
UNIX kernel. John Lions is a Professor of Computer Science
in the School of Computer Science and Engineering, at the
University of New South Wales.]

Q: John, I have been reading with joy the interview with you
that was published in UNIX Review in October, 1985. I found
it inspiring because it showed the hard fight you and your
colleagues and students took up to be able to adopt UNIX at
your University and to help to spread it in Australia and a-
round the world. In the UNIX Review article you describe the
arrival of UNIX saying "UNIX was a revolutionary force on
our campus." You tell how the University of New South
Wales decided to purchase a Cyber 72 computer in 1974.
But, since the Cyber could only recognize User200 terminals
which were by that time obsolete, the University bought
some PDP-11/40's to emulate User200s. You describe how
you wrote for information about UNIX after reading an arti-
cle by Ritchie and Thompson published in the "Communica-
tions of the ACM," and explained how a copy of Edition 5

[Lions Interview continued on page 5]

Page 2

[UNIX & Computer Science continued]
new mechanisms were invented." The most important, he ex-
plains, was that "participants and observers alike became
devoted to a new form of computing (the interactive,
multiuser, timesharing system). As a result, the Multics pro-
ject dominated computer systems research for many years,
and many of its results are still considered seminal."(1)
 By 1969, however, AT&T made a decision to withdraw
from the project. Describing that period, Dennis Ritchie, one
of the inventors of UNIX at Bell Labs writes, "By 1969, Bell
Labs management, and even the researchers came to believe
that the promises of Multics could be fulfilled only too late
and too expensively."(2)
 "Even before the GE-645 Multics machine was removed
from the premises," Ritchie explains, "an informal group led
primarily by Ken Thompson, had begun investigating alter-
natives."
 Thompson and Ritchie presented Bell Labs with proposals
to buy a computer so they could build an interactive, time
sharing operating system for it. Their proposals weren't acted
on. Eventually, Ken Thompson found a little used and
obsolete PDP-7 computer, a tiny machine in the class of a
Commodore 64 computer.
 The environment Thompson was attempting, explains
Ritchie, included "many of the innovative aspects of
Multics," such as "an explicit notion of a process as a locus
of control, a tree-structured file system, a command inter-
preter as a user-level program, simple representation of text
files, and generalized access to devices."(3)
 Describing the primitive conditions that Thompson faced
when attempting to create his desired programming environ-
ment, Ritchie writes, "At the start, Thompson did not even
program on the PDP itself, but instead used a set of macros
for the GEMAP assembler on a GE-635 machine. A post-
processor generated a paper tape readable by the PDP-7.
These tapes were carried from the GE machine to the PDP-7
for testing until a primitive UNIX kernel, an editor, an
assembler, a simple shell (command interpreter), and a few
utilities (like the UNIX rm, cat, cp commands) were com-
pleted. At this point, the operating system was self-support-
ing; programs could be written and tested without resort to
paper tape, and development continued on the PDP-7 it-
self."(4)
 The result, Ritchie explains, was that "Thompson's PDP-7
assembler outdid even DEC's in simplicity; it evaluated ex-
pressions and emitted the corresponding bits. There were no
libraries, no loader or link editor: the entire source of a pro-
gram was presented to the assembler, and the output file –
with a fixed name – that emerged was directly execut-
able."(5)
 The operating system was named UNIX, to distinguish it
from MULTICS.
 As work continued to create this new operating system, the

researchers developed a set of principles to guide their work.
Among these principles were:
 "(i) Make each program do one thing well. To do a new job,
build afresh rather than complicate old programs by adding
new features.
 (ii) Expect the output of every program to become the input
to another, as yet unknown, program. Don't clutter output
with extraneous information. Avoid stringently columnar or
binary input formats. Don't insist on interactive input.
 (iii) Design and build software, even operating systems, to
be tried early, ideally within weeks. Don't hesitate to throw
away the clumsy parts and rebuild them.
 (iv) Use tools in preference to unskilled help to lighten a
programming task, even if you have to detour to build the
tools and expect to throw some of them out after you've
finished using them."(6)
 By 1970, Ritchie writes, the UNIX researchers were "able
to acquire a new DEC PDP-11. The processor," he remem-
bers, "was among the first of its line delivered by DEC, and
three months passed before its disk arrived."(7) Soon after the
machine's arrival and while "still waiting for the disk,
Thompson," Ritchie recalls, "re-coded the UNIX kernel and
some basic commands in PDP assembly language. Of the 24
Kbytes of memory on the machine, the earliest PDP-11 UNIX
system used 12 Kbytes for the operating system, a tiny space
for user programs, and the remainder as a RAM disk."(8)
 "By early 1973," Ritchie explains," the essentials of modern
C were complete. The language and compiler were strong
enough to permit us to rewrite the kernel for the PDP-11 in C
during the summer of that year."(9)
 Each program they built developed some simple capability
and they called that program a tool. They wanted the pro-
grams to be inviting to use and to be helpful to programmers.
Describing the achievements of the lab, Doug McIlroy, one of
the researchers and Thompson's Department Head when he
created the UNIX kernel, describes the atmosphere at the lab:
"Constant discussions honed the system.... Should tools
usually accept output file names? How to handle de-mount-
able media? How to manipulate addresses in a higher level
language? How to minimize the information deducible from
a rejected login? Peer pressure and simple pride in workman-
ship caused gobs of code to be rewritten or discarded as better
or more basic ideas emerged. Professional rivalry and pro-
tection of turf were practically unknown: so many good things
were happening that nobody needed to be proprietary about
innovations."(10)
 The research done at the Labs was concerned with using the
computer to automate programming tasks, such as the ones
needed to program and operate the newly installed electronic
telephone switches. By a scientific approach to their work and
careful attention to detail, Bell Labs researchers determined
the essential elements in a design and then created a program
to do as simple a function as possible. These simple computer

Page 3

automation tools would then be combined to build programs
to do more complicated tasks.
 They created a UNIX kernel accompanied by a toolbox of
programs that could be used by others at Bell Labs and the
Bell System. The kernel consisted of about 11,000 lines of
code. "The kernel," Ken Thompson writes, "is the only
UNIX code that cannot be substituted by a user to his own
liking. For this reason, the kernel should make as few real
decisions as possible."(11)
 Thompson describes creating the kernel: "What is or is not
implemented in the kernel represents both a great responsi-
bility and a great power. It is a soap-box platform on <the
way things should be done.’ Even so, if <the way’ is too
radical, no one will follow it. Every important decision was
weighed carefully. Throughout, simplicity has been sub-
stituted for efficiency. Complex algorithms are used only if
their complexity can be localized."(12)
 The kernel was conceived of as what was essential and
other features were left to be developed as part of the tools
or software that would be available. Thompson explains:
"The UNIX kernel is an I/O multiplexer more than a com-
plete operating system. This is as it should be. Because of
this outlook, many features are found in most other operating
systems that are missing from the UNIX kernel. For exam-
ple, the UNIX kernel does not support file access methods,
file disposition, file formats, file maximum sizes, spooling,
command language, logical records, physical records, assign-
ment of logical file names, logical file names, more than one
character set, an operator's console, an operator, log-in, or
log-out. Many of these things are symptoms rather than fea-
tures. Many of these things are implemented in user software
using the kernel as a tool. A good example of this is the com-
mand language. Maintenance of such code is as easy as
maintaining user code. The idea of implementing 'system'
code and general user primitives comes directly from
MULTICS."(13)
 During the same period that Bell Labs researchers were
doing their early work on UNIX, the Bell System was faced
with the challenge of automating their telephone operations
using minicomputers.
 ?The discovery that we had the need — or actually, the
opportunity — in the early 1970s to use these minis to
support telephone company operations encouraged us to
work with the UNIX system,” writes Berkeley Tague.(14)
"We knew we could do a better job with maintenance, traffic
control, repair, and accounting applications."
 "The existing systems were made up of people and paper,"
he relates, "The phone business was in danger of being over-
whelmed in the early '70s with the boom of the '60s. There
was a big interest then in using computers to help manage
that part of the business. We wanted to get rid of all of those
Rolodex files and help those guys who had to pack in-
struments and parts back and forth just to keep things

going."
 He goes on to describe the kind of operations that the Bell
Systems needed to automate.
 Just as Operating Systems people in the Bell System had
come to recognize the need for portability in a computer
operating system, Ritchie and Thompson and the other pro-
gramming researchers at Bell Labs had created the computer
language C and rewritten the majority of the UNIX kernel in
C and thus had made the important breakthrough of creating
a computer operating system that was not machine dependent.
Eventually, 10,000 lines of the code were rewritten in C and
thus could be transported to other computer systems. Describ-
ing the advance the UNIX time sharing system represented,
Thompson and Ritchie presented their first paper on UNIX at
the Fourth ACM Symposium on Operating Systems Prin-
ciples, IBM Thomas J. Watson Research Center, Yorktown
Heights, New York, October 15-17, 1973.(15)
 With the research breakthrough of a portable computer
operating system, "the first UNIX applications," writes
August Mohr, in an article in UNIX Review, "were installed
in 1973 on a system involved in updating directory informa-
tion and intercepting calls to numbers that had been changed.
The automatic intercept system was delivered for use on early
PDP-11s. This was essentially the first time UNIX was used
to support an actual, ongoing operating business."(16)
 Also, Bell Labs made the software available to academic
institutions at a very small charge. For example, John Lions,
a faculty member in the Department of Computer Science at
the University of New South Wales, in Australia, reported
that his school was able to acquire a copy of research UNIX
Edition 5 for $150 ($110 Australian) in December, 1974, in-
cluding tape and manuals.(17)
 The automation introduced at AT&T had the benefit of
research done not only at Bell Labs, but also by researchers
in the academic community.
 Early in its development, word of the UNIX operating sys-
tem and its advantages spread outside of Bell Labs. (Several
sources attribute this to the paper that Ritchie and Thompson
presented on UNIX at the Symposium on Operating Princi-
ples in 1973.)(18)
 UNIX was attractive to the academic Computer Science
community for several reasons. After describing the more
obvious advantages like its price, that it could be shaped to
the installation, that it was written in C which was attractive
when compared with assembly language, that it was suffi-
ciently small that an individual could study and understand it,
John Stoneback, a faculty member at Moravian College,
writes: "UNIX had another appealing virtue that many may
have recognized only after the fact — its faithfulness to the
prevailing mid '70s philosophy of software design and devel-
opment. Not only was UNIX proof that real software could be
built the way many said it could, but it lent credibility to a
science that was struggling to establish itself as a science.

Page 4

Faculty could use UNIX and teach about it at the same time.
In most respects, the system exemplified good computer
science. It provided a clean and powerful user interface and
tools that promoted and encouraged the development of soft-
ware. The fact that it was written in C allowed actual code
to be presented and discussed, and made it possible to lift
textbook examples into the real world. Obviously, UNIX
was destined to grow in the academic community."(19)
 In trying to teach his students the essentials of a good oper-
ating system, John Lions of the University of New South
Wales in Australia describes how he prepared a booklet con-
taining the source files for a version of Edition 6 of research
UNIX in 1976 and the following year completed a set of
explanatory notes to introduce students to the code. "Writing
these," he recounts, "was a real learning exercise for me. By
slowly and methodically surveying the whole kernel, I came
to understand things that others had overlooked."(20)
 This ability to present his students with an exemplary oper-
ating system kernel was an educational achievement. Lions
writes: "Before I wrote my notes on UNIX, most people
thought of operating systems as huge and inaccessible.
Because I had been at Burroughs, I knew that people could
get to learn a whole program if they spent some time work-
ing at it. I knew it would be possible for one person to
effectively become an expert on the whole system. The
Edition 6 UNIX code contained less than 10,000 lines,
which positioned it nicely to become the first really accessi-
ble operating system."(21)
 In keeping true to the UNIX community spirit of helping
each other, Lions wrote a letter to Mel Ferentz, Lou Katz
and others from USENIX (then the academic UNIX users
association) and offered to make copies of his notes avail-
able to others. After some negotiation with Western Electric
over the patent licensing, he distributed the notes titled "A
Commentary on the UNIX Operating System" to others with
UNIX licenses on the conditions that Western Electric had
set out.(22)
 Describing how research UNIX and its adoption at aca-
demic institutions has served to develop computer science,
Doug Comer writes: "The use of UNIX as a basis for
operating systems research has produced three highly
desirable consequences. First, the availability of a common
system allowed researchers to reproduce and verify each
others' experiments. Such verification is the essence of sci-
ence. Second, having a solid base of systems software made
it possible for experimenters to build on the work of others
and to tackle significant ideas without wasting time develop-
ing all the pieces from scratch. Such a basis is prerequisite
to productive research. Third, the use of a single system as
both a research vehicle and a conventional source of comput-
ing allowed researchers to move results from the laboratory
to the production environment quickly. Such quick transition
is mandatory of state-of-the-art computing."(23)

 Not only did research UNIX serve the academic commu-
nity, but the contributions of the academic community were
incorporated into research UNIX. An example, is the work at
the University of California, Berkeley (UCB) of designing a
virtual memory version of UNIX for the VAX computer
which was later optimized and incorporated into a release of
UNIX.
 "A tide of ideas," explains Comer, "had started a new cycle,
flowing from academia to an industrial laboratory, back to
academia, and finally moving on to a growing number of
commercial sites."(24)
 Summarizing the relationship between Bell Labs and the ac-
ademic community in developing UNIX, Comer concludes:
"UNIX was not invented by hackers who were fooling
around, nor did it take shape in a vacuum. It grew from strong
academic roots and it has both nurtured and taken nourish-
ment from academia throughout its development. The primary
contributors to UNIX were highly educated mathematicians
and computer scientists employed by what many people feel
is the world's premier industrial research center, Bell Lab-
oratories. Although they were knowledgeable and experi-
enced in their own right, these developers maintained profes-
sional contacts with researchers in academia, leading to an
exchange of ideas that proved beneficial for both sides.
Understanding the symbiotic relationship between UNIX and
the academic community means understanding the back-
ground of the system's inventors and the history of interac-
tions between universities and Bell Laboratories."(25)
 John Lions, reviewing his experience as part of the UNIX
community, concludes, "We have made a large number of
contacts and exchanged a great deal of information around the
world through this UNIX connection. Possibly that is the nic-
est thing about UNIX: it is not so much that the system itself
is friendly but that the people who use it are."(26)
 It is a rare and wonderful event in the development of
human society when a scientific and technological break-
through is made which will certainly affect the future course
of social development and which becomes known when its
midwives are still alive to tell us about it. The creation of
UNIX, the product of research at Bell Labs, the then regu-
lated AT&T system, and academic computer science, and a
valuable invention for computer science, for computer
education and for the education of the next generation of
computer scientists and engineers, is such an event.

Notes:

(1) Douglas Comer, "Pervasive UNIX: Cause for Celebra-
tion," UNIX Review, October, 1985, pg. 42.
(2) From Dennis Ritchie, "The Development of the C
Language," ACM, presented at Second History of Program-
ming Languages Conference, Cambridge, Mass, April 1993,
pg.1.
(3) Ritchie, pg. 1-2.
(4) Ibid., pg 2.
(5) ibid.
(6) From M. D. McIlroy, E. N. Pinson, and B. A. Tague
"UNIX Time-Sharing System Forward", The Bell System

Page 5

Technical Journal, July-Aug 1978, vol 57, no 6, part 2,
pg. 1902.
(7) Ritchie, pg. 5.
(8) ibid.
(9) ibid., pg. 9.
(10) M.D. McIlroy, "UNIX on My Mind," Proc. Virginia
Computer Users Conference, vol 21, Sept. 1991,
Blacksburg, pg. 1-6.
(11) K. Thompson, "UNIX Implementation", The Bell System
Technical Journal, vol 57, No. 6, July-August 1978,
pg. 1931.
(12) ibid., pg. 1931-2.
(13) ibid., pg. 1945-6.
(14) "Interview with Berkeley Tague," UNIX Review, June
1985, pg. 59. (See also Sorry Wrong Number, by Alan
Stone, N.Y. 1989, pg. 155-156 describing the service
crisis experienced by AT&T during this period and how
UNIX helped to solve the problem.)
(15) See reference in UNIX(tm) Time-Sharing System: UNIX
Programmers Manual, 7th edition, vol 2, Murray Hill, f/n
pg 20). See also Ritchie's account of the creation of C
by early 1973 in "The Development of the C Language,"
ACM, presented at Second History of Programming Lan-
guages Conference, Cambridge, Mass, April 1993, pg. 1.
(16) Mohr, "The Genesis Story", UNIX Review, January
1985, pg. 26.
(17) See, for example, McKusick, "A Berkeley Odyssey" in
UNIX Review, January 1985, pg. 31, and Peter Ivanov,
"Interview with John Lions", UNIX Review, October, 1985,
pg. 51.
(18) See "An Interview with John Lions," in UNIX Review,
October, 1985, pg. 51.
(19) From John Stoneback, "The Collegiate Community,"
UNIX Review, October 1985, pg. 27.
(20) Lions, pg. 52
(21) Lions, pg. 52-3.
(22) ibid., pg. 53.
(23) Comer, pg. 44.
(24) Comer, pg. 43.
(25) Comer, pg. 34, 42.
(26) Lions, pg. 57.

[John Lions interview continued]
tape and manuals arrived in late December, 1974. A little
later in the Interview you relate how Ian Johnstone with
assistance from others wrote a new User200 emulator "that
ran under UNIX. That," you point out, "became the first
application of UNIX to be written in Australia This
exercise proved to be extremely important. With a PDP-11,"
you explain, " completely to ourselves, we most likely would
have run vanilla UNIX on it and been happy. But because we
had to provide the User200 emulator, we had to learn a lot
about the system and pay a lot of attention to performance
issues. We needed help, but we couldn't get any from outside
sources. So we ended up generating our own expertise."

Lions: Undoubtedly true....

Q: What was it about UNIX that led you to do the hard work
that you did? Were you aware of the power that it promised?
Was that some of the consideration or was it more practical
— that you had certain things you wanted to be able to do
and could hack to get the UNIX system to do it?

Lions: UNIX was wonderfully plastic. We changed things to
adapt them to our situation ... because it was a challenge, and
we were having fun!

Q: You then say that through your work on UNIX you started
to make a few friends elsewhere on campus. Were they from
any other particular department? How did you begin to build
a user group? Did you start having formal meetings?

Lions: Other people at the other batch stations were interested
in solving the same problems as we were, so we found a
common cause. This included the Library which in those days
had passwords for the ordinary user accounts, but not for the
super-user ... very convenient!

Q: Can you say what kinds of similar problems people in
other universities were encountering at the time that led you
to be able to work together?

Lions: In a word ... isolation.

Q: Do you have any idea why UNIX was so widely adopted
at other Australian Universities?

Lions: We spread the news evangelically ... We were very
anxious to share our accumulated knowledge and to experi-
ment ... and we wanted to share it with others. We were
having fun!

Q: You say that UNIX has possibly made a deeper penetra-
tion in Australia than in any other country.

Lions: That comment has to be understood in its proper
context. I would not make it today. UNIX penetration is now
100% by university, though not by department within univer-
sities. The Internet is heavily UNIX-dependent, so I believe.

Q: In the UNIX Review interview, you describe how in 1975,
Ian Johnstone who was acting as a tutor for the operating
systems course you taught, asked, "Why don't we run off a
few of the source code files for the kernel and ask the
students to take a look at them? Then we can ask them some
questions; maybe it will be interesting." What kind of
questions did you folks intend to ask?

Lions: The same kind that the Commentary answers

Q: After you took his suggestion and you both selected what
seemed like a reasonable subset of the kernel and handed it
out to students, you report that you asked them questions, but
that they didn't have enough information to answer them so
"they came back to us with questions of their own many of
which we couldn't answer." Can you say any more about how
the students suggested that you offer the complete kernel for
study?

Lions: They suggested that it should be all or nothing. The

Page 6

selection of code I finally printed (on a DECwriter) is only
complete in a limited sense. Section Five that deals with
device drivers could have been much longer.

Q: Was there any special reason that you took their sugges-
tions? What led to the preparation in 1976 of the booklet
containing the source files for a version of Edition 6 UNIX
that could run on a PDP-11/40 system?

Lions: Seemed reasonable at the time ... what other options
reasonably existed?

Q: You say "Writing these was a real learning exercise for
me. By slowly and methodically surveying the whole kernel,
I came to understand things that others had overlooked." Can
you give any examples of what you came to understand that
others had overlooked?

Lions: No. I guess what I meant to say was that I obtained an
integrated view that allowed me to see more connections in
the code than others did. I used to test the students' knowl-
edge and understanding by weekly tests. Most years there
would be two tests on each of the first four sections of the
code.
 Students could sit for both tests in each section, but they
were discouraged from submitting more than one answer for
marking. If they chose to submit two answers, their mark
was the better of the two, less 10%. This allowed students to
recover from a bad first result, while discouraging them from
trying again if their first attempt was reasonable. Marking
was always a problem as overnight turnaround was needed.
 The sophistication of the questions increased over the
years and towards the end, some new questions were quite
devious. (Don't ask me for examples!)

Q: In the Commentary you say: "A decision had to be made
quite early regarding the order of presentation of the source
code. The intention was to provide a reasonably logical
sequence for the student who wanted to learn the whole
system. With the benefit of hindsight, a great many improve-
ments in detail are still possible, and it is intended that these
changes will be made in some future edition." Did you ever
write the future edition making the changes?

Lions: No. There had been a three year gap between [UNIX
-ed] Editions Six and Seven. This created a window of
opportunity for us that never really occurred again.

Q: In your Commentary you say "You will find that most of
the code in UNIX is of a very high standard. Many sections
which initially seem complex and obscure, appear in the
light of further investigation and reflection, to be perfectly
obvious and 'the only way to fly.' For this reason, the

occasional comments in the notes on programming style,
almost invariably refer to apparent lapses from the usual
standard of near perfection But on the whole you will find
that the authors of UNIX, Ken Thompson and Dennis Ritchie,
have created a program of great strength, integrity and
effectiveness, which you should admire and seek to emulate."

Lions: That is what I believed then ... and still do.

Q: Can you say any more about the conclusion you drew of
the high standard of code in the UNIX kernel? Do you feel
that students and others who studied your book and the code
did emulate it? Did that help improve the level of code of
those who had access to your book and the source code?

Lions: In a general sense, I believe the answer is 'yes':
students did learn better coding practices.

Q: In the UNIX Review article, you relate that in 1977 at the
University of New South Wales you were developing your
own PDP version of UNIX to handle heavy student loads and
that Ian Johnstone, Peter Ivanov and Greg Rose developed a
"sanitized extended version of UNIX." And you made some
changes to the kernel. Can you say what the most important
ones were?

Lions: We fixed bugs that we found... or had introduced
ourselves. I cannot recall what they were... and of course the
Seventh Edition changed everything anyway. We only did it
once: that was enough.

Q: Was your examination of the kernel for the Commentary
helpful in determining what changes to the kernel were
needed. For example, in the Commentary on pg. 82 under
"Some Comments" you say " 'namei' is a key procedure which
would seem to have been written very early, to have been
thoroughly debugged and then to have been left essentially
unchanged. The interface between 'namei' and the rest of the
system is rather complex, and for that reason alone, it would
not win the prize for 'Procedure of the Year.' Earlier in the
Commentary in chapter 19 (pg. 82) you say "Copy the eight
words of the directory entry into the array 'u.u_dent'." Then
you comment, "The reason for copying before comparing is
obscure! Can this actually be more efficient? (The reason for
copying the whole directory at all is rather perplexing to the
author of these notes.);" Were these problems clarified upon
further examination or if not, did you make any effort to solve
them when you folks made changes to the kernel?

Lions: No comment now. My understanding changed over the
years, and some questions that may been obscure once were
no longer so.

Page 7

Q: In the UNIX Review Interview you explain that you were
the first person from the UNIX community in Australia to
spend a sabbatical at Bell Labs. Who invited you to the
Labs? When? Why? What did you do once there?

Lions: After I started distributing copies of my notes on
UNIX (Source Code and Commentary), I sent more than two
hundred copies to BTL [Bell Telephone Laboratories -ed].
One night (sometime in 1978?), I had a phone call from
Doug McIlroy saying BTL would like to assume respons-
ibility for distributing those documents, and would I agree?
I did. It saved me much work.
 At the beginning of 1978, when I was starting to wonder
what to do for my first sabbatical leave, I had another late
night call, this time from Berkley Tague enquiring whether
I might be willing to visit BTL, another easy decision.
 In the middle of 1978, my family (us and two daughters)
set off for the USA, Madison, NJ in particular, where
Berkley had arranged for us to rent the house of an academic
from Drew University. (They were going to the south of
France for his sabbatical!)
 I can still remember arriving at 26 Morris Place, tired but
pleased to be there (I think we must have rented a car from
Newark airport). Shortly afterwards Berk arrived and
introduced himself. We have been firm friends since then,
with both him and his wife, Anne-Marie. He is undoubtedly
one of nature's gentlemen.
 Madison, N.J. is only a few miles (less than 10 — I
forget!) from BTL. Incidentally, Berkley used to collect me
each morning and drive me from Madison to the Labs, so my
wife could have our car!

Q: You say in the UNIX Review interview that you worked
in the UNIX Support Group while at Bell Labs during that
first sabbatical and were able to introduce a number of
utilities, including pack, etc. Can you say more about what
your work was during that first sabbatical?

Lions: There were no expectations and I was given a free
hand to follow my own interests. Fortunately for BTL I had
lots of ideas, so there was never a problem.

Q: Do you know how your book was used as part of the
work that USG [UNIX Support Group -ed] was doing? Do
you know how it was used both elsewhere in Bell Labs and
outside?

Lions: I had sent them the original copies of my notes. They
reproduced them and provided one copy to each new
licensee (so I believe). Each new licensee was allowed to
make additional copies under specified conditions.

Q: At the end of the UNIX Review Interview you say that it

was not so much that the UNIX system is friendly but that the
people who use it are. Do you have any sense of what about
UNIX makes this true?

Lions: Not really. That was just my experience. I think you
ought to remember that BTL is a very special place, and its
Research Department is also very special.

Q: What would you see as an appropriate way to commemo-
rate the 25th anniversary of the creation of UNIX in 1994?

Lions: I gather USENIX is attempting to organize a meeting.

Automating Telephone Support
Operations:

An Interview with Berkley Tague

[Editor's Note: The following interview with Berkley Tague
was also done while I was doing research for a paper on the
history and significance of UNIX. During the course of this
research, I found an interview which had appeared in UNIX
Review, ("Interview with Berkley Tague," June, 1985) The
interview suggested some further questions which I sent to
Berkley Tague via e-mail. His responses were very helpful
and I thought that others would find them interesting as well.
Therefore, we asked for permission to print them in the
special issue of The Amateur Computerist to commemorate
the 25th Anniversary of UNIX. Following are the questions
and his responses. He emphasized that his answers were his
personal experience as part of the UNIX development project
and represent only one of many such views of the Bell Labs
project. -RH]*

Q(1): Can you explain what the problem was that AT&T was
trying to solve in the 1960's and 1970's with regard to labor
intensive support operations that had to be automated (i.e.,
mechanized)? What kinds of operations were the problem and
why did they need to be automated?

Tague: The push — it began about 1969 — was to use the
computer to support the operation of the Bell System net-
work. The effort was quite broad in scope: monitoring and
alarms, maintenance and staff management, inventory and
order control, revenue data collection and billing, traffic
measurement and control, circuit provisioning, etc.
 To take one example, the data that has to be collected to bill
for calls was being stored on a variety of media — e.g. paper
AMA tape, a punched paper tape a few inches wide, IBM
compatible mag. tape, and probably a few others. These tapes
had to be mounted, saved, trucked to DP [Data Processing
-ed] centers for processing, etc. They could be lost or dam-

Page 8

aged in handling. An obvious solution was to send the data
over datalinks — our own network — to the DP centers.
Minicomputer-based systems were designed to collect, pre-
process and transmit this data in some cases; in others, the
electronic switches themselves were programmed to do the
job. The goal was to eliminate the need for people handling
physical media — a process that is both expensive and error-
prone.

Q(2): What work was done by Bell Labs in 1964-68 as part
of the Multics Project? Why did AT&T get involved with
the Multics collaboration? (Can you explain what were the
labs' objectives?) A reference I have found mentioned that
"Bell Labs' purpose was to have a good environment for our
people to work in." (See "Putting UNIX in Perspective: An
Interview with Victor Vyssotsky," UNIX Review, Jan., 1985,
pg. 59) If that seems accurate to you, can you explain why
that was the objective and what it meant? And what hap-
pened with the project that AT&T decided they had to drop
out?

Tague: The Multics Project was a joint project of Bell Labs,
the GE Computer Systems Division, and MIT's Project MAC
to develop a new computer and operating system that would
replace MIT's CTSS system, Bell Labs BESYS, and support
the new GE machine. Bell Lab's objective was to obtain a
computing system that could simultaneously support batch,
time-shared and real-time processing under an operating
system that provided a full set of features with exceptional
security. GE, and MIT's Project MAC, had overlapping, but
somewhat different sets of objectives. Why the project ended
as it did — Multics never was used by Bell Labs or AT&T
as other than a research tool — is a complex story that I
don't fully know. (The part I think I know also may be only
partly correct.) What is clear is that Multics was a seminal
effort in computing science and operating systems design. It
established principles and features of operating system
design that today are taken for granted in any modern
operating system. This design experience and the UNIX®
system itself were the payoff for Bell Labs in the long run.
 Vic's remark covers one of the objectives. Multics was
intended to be a standard operating environment to support
Bell Labs computing. That role was eventually filled by the
UNIX® system, not Multics.

Q(3): What was learned from the project and was there a
sense how this could be helpful at Bell Labs?

Tague: Much that was learned from the project was embed-
ded in C and the UNIX® system. The security rings and
related concepts also have had impact on subsequent
computer security even though the full-blown security
apparatus of Multics was not propagated in the UNIX®

system. There are undoubtedly many other Multics features
and concepts that were not in UNIX® but still had impact on
computing science. I don't know all of the work that was
done, especially after I left the project in 1967; the system
was almost entirely rewritten after I left the project.

Q(4): What was going on with computer science research
during this period at the Labs?

Tague: Bell Labs terminated its participation in the Multics
project (except for a couple of people wrapping up loose
ends) in the summer of 1969. At the same time, Bell Labs
turned the large internal computing centers over to a new
central Bell Labs organization called Computing Technology.
This included the Murray Hill Computing Center that up to
then had been operated by Computing Research.
 These changes meant that a number of researchers in
Computing Science were asked to redirect their efforts. In the
review and redirection that ensued, one point of view was that
Computing Research should focus exclusively on theoretical
subjects such as automata theory, computing complexity
theory, formal linguistics, etc. Since this would have excluded
the UNIX system experiments, it is fortunate that this view-
point didn't prevail. (I don't think it ever got beyond a talking
point in the debate.)

Q(5): You mentioned you came back to Bell Labs in 1970.
What was the situation that brought you back there (if it was
related to the development of UNIX)? Were you involved
with the development of UNIX during that period?

Tague: I have never left Bell Labs. The confusion is the
internal nomenclature. In 1967, I left Bell Labs Research —
this is the basic research area that is located at Murray Hill
and Holmdel — and took a position managing a software
development group in Bell Labs Federal Systems division in
Whippany, N.J. that was part of the Safeguard ABM project.
I returned from that assignment in September of 1969 to
Murray Hill to join the Murray Hill Computing Center. This
was during the transition that ended Bell Labs participation
in Multics and transferred the MH Computing Center to the
new central organization (see #4). I reported to co-directors
— one in Research and one in the newly formed Computing
Technology organization. All of these organizations were part
of Bell Labs.
 I was not involved with Multics development after 1967
when I joined Safeguard and only became involved with
UNIX(r) officially in late 1971 or so. I began exploring its use
in development for telephony applications late in 1972 or
thereabouts. This led to requiring the UNIX® system for
some development projects and forming the UNIX Support
Group in September of 1973. This was a supervisory group of
about five people that reported to me and was also part of

Page 9

Bell Labs. It was responsible for moving the UNIX® system
from research to an internally supported product for software
development and operations services.

Q(6): Can you explain when the work at Bell Labs on UNIX
was thought of as being helpful toward the problem that
AT&T faced in automating support operations? Was there an
awareness at the Labs that the work they were doing on
UNIX was not only towards creating a good programming
environment to do their research in, but also to be able to
create a good programming environment for others at AT&T
who would be doing programming? If so how early was
there this awareness? (If you know.)

Tague: The researchers involved had as their goal an
operating system that would be good for software develop-
ment from the start. Because they were their own first
customers, the system was aimed at their fellow researchers.
There is really not that much difference between the needs
of research and [the needs of -ed] development in terms of
tools and features, the difference is primarily in support,
stability and reliability. Developers have deadlines and don't
want any more dependence on new invention than absolutely
necessary. Also, if you have development deadlines, you
certainly don't want anyone changing the system independ-
ently as you do your work. As a researcher you may tolerate
a fair amount of upset and revision if it improves your toolkit
significantly. The creation of the UNIX® Support Group
was precisely to provide the stability and support that would
buffer developers from the experiments that researchers
were daily imposing on the evolving UNIX® system.
 As mentioned above, the UNIX® system was used by
developers and supported operations in the field as early as
1972. There were about three different systems at that time
that had been built in research for minicomputers, but I felt
that UNIX was the best of the lot since it had captured most
of the best features of Multics in a small, elegant package.
(See my UNIX Review interview, pages 60ff.)

Q(7): What difficulties were involved in trying to have
UNIX used for the task of automating support operations?
Why was it being proposed? What obstacles did it face?

Tague: One major difficulty was convincing developers that
they could depend on an operating system that had no
official support and consisted of some 12,000 lines of
uncommented code. (Proposing the UNIX Support Group
was the obvious answer to this.) But UNIX® had one major
advantage: I knew of no minicomputer vendor that had
anything approaching it as part of their product line. Most
minicomputer systems at that time were inferior to DOS 1 in
function, speed and reliability. UNIX® had a rare opportu-
nity to fill what was effectively a vacuum. I was pushing

UNIX® onto our development community because I knew
they needed it in spite of its shortcomings. A number of
developers were planning to build their own operating
systems — typically their first system and often their first
major program. It was quite rational to suggest that someone
who had been working for several years on his third operating
system might be ahead of them.

Q(8): What led to the creation of the UNIX Support Group
(USG)? When? What was its mandate?

Tague: I think I answered this one in the answer to #7. One of
the nice properties of Bell Labs is that when you perceive a
need, you can propose a solution with a good chance of being
asked to go do it yourself. In 1973, I pointed out that there
was a need to provide central support for the UNIX systems
we had been propagating into projects and volunteered to
form the group in my department. By September, I was in
business.

Q(9): Once the USG was formed (in 1973) was there a
distinction between the priorities of the Bell Labs people and
the USG people in their collaboration? August Mohr's article
[i.e., August Mohr, "The Genesis Story," UNIX Review, Jan.,
1985] seems to indicate that they both agreed there was a
need for portability despite different priorities.

Tague: When the USG was formed in September, 1973,
Dennis Ritchie promised me the portable version in October
and delivered it. It was a "no brainer" to go into business with
the portable version. A goal of my effort was to gain vendor
independence so we could get competitive bids on volume
buys when we deployed these mini-based systems across the
Bell System. There was one project that decided it couldn't
wait until October and committed to the non-portable version,
but that was the only project that used the non-portable
version as far as I know.

Q(10): What were the problems and successes of USG?

Tague: The biggest problem was controlling the UNIX®
system variants that continually emerged. New features and
function were added by every project and the USG had to
choose among or merge the variants in a continuing effort to
filter out the redundancies and keep the best. Berkeley, the
University not me, was doing this in parallel with us and with
only loose coordination possible.
 The success of USG was its contribution to the success of
the UNIX® system. UNIX® created open systems and a
multibillion dollar market. Not bad for a two person research
initiative on an obsolete mini.

Q(11): Did Rudd Canaday's work represent similar objec-

Page 10

tives? What was the division between the two groups and
why?

Tague: I am not sure what you mean by "Rudd Canaday's
work" in this context. Rudd shares in the patent on the
UNIX® file system which he did in Research as a colleague
of Ken and Dennis. Later, he moved to the Business Infor-
mation Systems (BIS) project and brought the UNIX®
system with him. The Programmer's WorkBench (PWB)
variant grew up in his department.
 The BIS problem was to get a common "workbench" that
would drive code onto any of the three or four commercial
vendor's mainframes that were used by BIS. By putting a
UNIX® system in front of the large mainframe systems,
developers got the advantages of UNIX® in developing code
and a place they could store debugged standard command
sequences that drove development and testing on the target
mainframe.
 The PWB support group was merged with the USG in
about 1975 and the USG and PWB versions were integrated.
Note that during the 70s, every development group modified
the UNIX system for its needs. The PWB group was one of
many and was distinguished only by the quality of its work
and the fact that it was widely deployed through a large and
important project (BIS). But there were also very active
groups at Columbus and at Holmdel Bell Labs locations that
were modifying the system and offering their mods to the
USG for inclusion in the base version.
 The vice and virtue of UNIX has always been its flexibil-
ity. You love its flexibility when you meet a new need, but
you want a single standard version once it meets your needs.
COSE is just the latest of many efforts to coalesce the
variants into a common base.

Q(12): Who invited John Lions to the Labs? When? Why?
What did he do once there?

Tague: Research asked me to invite him to work with the
USG. He had written his wonderful book on the UNIX®
system early in the game and we had found it most useful.
We agreed to publish and distribute the book and wanted
John to continue his work as one of the UNIX apostles in
Europe and Australia. He wanted to come to Murray Hill for
his sabbatical so it was a win/win situation. He spent two or
three sessions at Bell Labs over the years and supplied us
with many of his graduate students for sabbaticals and
permanent employment. For me, he became not only a
valued contributor, but a good friend. A truly delightful
gentleman!
 At this distance, I don't remember exactly what he worked
on, but I asked him to extend his documentation of the
system to some new features while giving him license to
work with the researchers in whatever way was mutually

fruitful. His book is a classic that is still worth reading by the
would-be operating systems designer.

Q(13): Was his book A Commentary on the UNIX Operating
System used at the Labs or in the USG? If so how?

Tague: Yes. We offered it as a part of the documentation
package for those who wanted to understand or modify the
UNIX® source that the USG shipped. It was very useful as an
introduction even though the code no longer matched the
book. It outlined the conceptual architecture very clearly in
the early short form of the system before it had accreted all
the minor changes and feature additions that disguised the
original clarity of its structure. All new people were given a
copy when they joined the USG and I suspect most develop-
ment groups did the same.

Q(14): Who else did you invite from his school and why?
What work did they do?

Tague: It's a long list and I don't trust my memory, but
Andrew Hume is still in research at Murray Hill. Ian
Johnstone left us for Sequent and I believe is now working in
Boston with another firm. Peter Ivanov and Piers Dick-Lauder
were two others who were part of my department, and there
were likely others who came along after I left the scene. They
all worked on UNIX system development, but I couldn't tell
you what parts they worked on. I do remember that Ian
worked on the first multiprocessor versions, but he did many
other things prior to that. I used to kid about running the
"Australian Chair of Computing Science" at Bell Labs.

Q(15): In the UNIX Review interview you are quoted saying
that you originally opposed having UNIX go out to colleges.
But it did anyway. What was the reason you opposed it (if
anything in addition to what you said in the interview)? Why
was it allowed to go out over your objections? What would
you say was the result of making it available to academic
institutions outside of AT&T?

Tague: I don't have anything substantive to add to what I said
in the interview, but perhaps I can clarify what I was trying to
say there. My position in the early '70s was that we should
make C available outside Bell Labs in the way we released
other tools for university (and occasionally for commercial)
use through our patent licensing organization. This release
was "caveat emptor" — i.e., dollars on the table up front with
no support included. I opposed the release of the UNIX
system without support because I was afraid it would be
adopted for commercial use by someone who could call up
the president of AT&T and demand help. I knew that any
such request would likely find its way to my department and
we were not ready to provide outside support. I also had a

Page 11

vague idea that the system might be more valuable to AT&T
as a proprietary AT&T system. I was wrong. The system was
rapidly picked up by academic and industrial research
groups that were well prepared to deal with the no support
proviso and it had no takers in the DP community until it
was offered as a supported product. The value of the system
as a portable open standard was evident early and when
AT&T was allowed to enter the computing business, it was
a clear winner as a de facto standard.

Q(16): How has UNIX been used for support operations?
When was it understood that it could be used? Does it
continue to be used?

Tague: The UNIX® system is the standard operating
environment for almost all internal development and much
research at Bell Labs and has been so since the early eight-
ies. The BaseWorX© platform that we use and sell for
operations support systems includes UNIX® SVR4 as an
essential component. Operations support usage started in
about 1971 and continues today.

Q(17): Was portability the only problem that had to be
solved before UNIX could be used internally for support
operations? If there were other such problems what were
they?

Tague: See the answers above. There were many extensions
and features that have been added over the years — inter-
process communications mechanisms, streams, transaction
processing, databases, etc. — and most of these are useful to
the broad community of Bell Labs users. Each was originally
motivated by some perceived user problem. As the UNIX
system has evolved, it has incorporated valuable features
from other systems and served as a base for pioneering new
ideas. It is interesting to see the UNIX to Mach to NT
evolution as the kernel is subdivided to meet new fund-
amental needs while still maintaining original functions in
almost the same form as the original V6. Even DOS imitates
a good bit of the command set in a roughly familiar way.

Q(18): In the UNIX Review Interview you are quoted saying
that you expected the internal development of UNIX within
AT&T to be mirrored outside of AT&T. Has that happened
or not? Do you have any insight why?

Tague: I am going to duck this one. I am not sure what I had
in mind when I said it at this point. I guess I was thinking
that the external market would continue the process of
expanding the system rapidly to include new features,
followed by attempts to filter them into a coherent extended
standard. Neither the internal development nor the external
development has gone as I might have predicted (or might

have hoped) a decade ago, but the system is still alive,
evolving and providing service on a broader spectrum of
hardware than any other system around.

Q(19): What are the successes of it all that you see? (of the
UNIX and USG developments?) the problems?

Tague: See my answer to #10 above. The biggest problem
continues to be the variants and the difficulty of getting an
industry standard API that supports "shrink wrapped"
software packages. The issue of a standard "desktop" GUI is
probably a close second. COSE is trying again and I wish
them well.

Q(20): What would you see as an appropriate way to com-
memorate the 25th anniversary of these achievements?

Tague: Stop for a moment and contemplate how much of
what we take for granted in today's operating systems was
established in that post-Multics synthesis by Ken and Dennis,
acknowledge the pioneers of Projects MAC and Multics, and
then go back to work on defining the next plateau.

[*Note: Please understand that what you have is my personal
view of the UNIX® system developments and not necessarily
those of Bell Labs. Your questions made me go over an
interesting part of my career with Bell Labs and you likely got
more than you bargained for. Each participant in UNIX®
system development has his or her own view of this period
and they don't always agree as to the order or interpretation of
events. I cannot claim to more than one such view and, as an
early enthusiast, may well overestimate my personal role in
the story. Berk Tague]

Creating a New Technology:
The Technology of Software Production

An Editorial on the
25th Anniversary of UNIX

[Editor's Note: The following editorial is an effort to encour-
age a discussion of the significance of UNIX. We welcome
alternative viewpoints, comments, etc. on the issues raised in
this editorial.]

 In his book Ancient Society, Louis Henry Morgan, who has
been called the father of anthropology, described the impor-
tant role that the creation of iron played in the advance of
human civilization. He wrote: "When the barbarian, ad-
vancing step by step, had discovered the native metals, and
learned to melt them in the crucible and to cast them in
moulds; when he had alloyed native copper with tin and

Page 12

produced bronze; and, finally, when by a still greater effort
of thought he had invented the furnace, and produced iron
from the ore, nine tenths of the battle for civilization was
gained."(1)
 "Furnished with iron tools," continued Morgan, "capable
of holding both an edge and a point, mankind were certain of
attaining to civilzation."(2)
 Morgan called the production of iron, "the event of events
in human experience.... Out of it," he wrote, "came the
metallic hammer and anvil, the axe and the chisel, the plow
with an iron point, the iron sword; in fine, the basis of
civilization which may be said to rest upon this metal."
 With the birth of the modern computer, the development
of a new technology has been put on the agenda for our
times. This technology will not be forged in furnaces as were
the tools of our ancestors. It is not even possible to grab or
hold this technology.(3) This technology is the technology
of software production. The challenge for our society is to be
able to develop a software production technology.
 By the early 1960's, Bell Labs researchers realized that
there would be an ever increasing role that computers would
play in the operations of a large utility like the U.S. tele-
phone system. And the telephone service crisis of the late
1960's showed that indeed AT&T had to automate to be able
to meet its obligations to the public in the U.S. To accom-
plish this automation, they realized they would have to put
software production on a more rational basis. Writing about
this challenge, researchers explained: "One might think that
because typing is easier than soldering, it should be easier to
change software than to change hardware. However, the ease
of changing software depends on the language at hand, the
quality of the editor, the file system, structure, etc."(4)
 The UNIX time sharing system was created 25 years ago
at Bell Labs to help to fulfill this need. One of the important
contributions of UNIX in its 25 years of development has
been the role that UNIX has played to put the production of
software on a more rational and scientific basis.
 Describing the problem facing computer software pio-
neers, Evan L. Ivie, a researcher at Bell Labs, writes:
"Although the computer industry now has some 30 years of
experience, the programming of computer-based systems
persists in being a very difficult and costly job. This is
particularly true of large and complex systems where
scheduled slips, cost overruns, high bug rates, insufficient
throughput, maintenance difficulties, etc., all seem to be the
rule instead of the exception. Part of the problem stems from
the fact that programming is as yet very much a trial and
error process."(5)
 Ivie explains that there is "only the beginnings of a
methodology or discipline for designing, building and testing
software. The situation is further aggravated," he adds, "by
the rapidly changing hardware industry and by the continu-
ing evolution of operating systems which continues to

nullify much of the progress that is made in the development
of programming tools. What can be done," he asks, "to move
the programming industry toward a more professional and
stable approach to software development?"(6)
 After enumerating several possible alternatives, he proposes
"a very different approach to improving the development
process." The approach he proposes is that "the programming
community develop a program development 'faculty' (or
facilities) much like those that have been developed for other
professions." And he cites as examples a "carpenter's work-
bench," or a "dentist's office," or an "engineer's laboratory."
This approach, he maintains, "would help focus attention on
the need for adequate tools and procedures; it would serve as
a mechanism for integrating tools into a coordinated set; and
it would tend to add stability to the programming environment
by separating the tools from the product (the current ap-
proach," he notes, "is equivalent to carpenters leaving their
tools in each house they build.)"(7)
 Ivie's proposal was carried out in what came to be known as
the Programmer's Workbench. A set of UNIX and C software
development tools were created and were made available to
programmers, even though they were working on different
machines and with different operating systems.
 P.J. Plauger, one of the UNIX pioneers who helped to
define the concept of a software development tool writes that
"the programmer working as a tool builder finds that his
impact extends far beyond the task he may originally have set
out to solve."(8)
 Doug McIlroy, one of the creators of UNIX, explains that
the term "software tools" was still unnamed around the circle
of UNIX pioneers until Brian Kernighan and Plauger wrote
the book Software Tools. "The idea nevertheless became a
'guiding principle,' " writes McIlroy.
 It was only with the "liberation of the grep pattern matching
program from within the ed editor, that the "unarticulated
notion of software tools… was finally brought home."(9)
"More than any other program," McIlroy explains, "grep
focused the viewpoint that Kernighan and Plauger christened
and formalized in 'Software Tools': make programs do one
thing and do it well, with as few preconceptions about input
syntax as possible."(10)
 Kernighan and Plauger give the following definition of a
software tool: "It uses the machine; it solves a general
problem not a special case; and it's so easy to use that people
will use it not build their own."(11)
 Describing one of the important problems that UNIX was
called on to solve, Dick Haight, another of the pioneers,
explained the problem facing AT&T, one of the largest
corporations in the U.S., in the early 1970s.
 "We had a real problem to solve," Haight elaborates in an
interview. "For one thing, we had a fairly large group of
software developers at the Labs working on several different
mainframes. The biggest group... consisted of people working

Page 13

on the IBM 360s or 370s. The programmers working on the
IBM 360 or 370 had to contend with batch processing and
IBM's Job Control Language (JCL) problems. Other pro-
grammers were working with the Univac and another group
with Xerox computers. Only a few were using early but
expensive time sharing like TSO (IBM's timesharing) and
Univacs Remand Service." Haight explains that "these
systems not only offered very different programming
environments but proved to be very expensive to use and
very unfriendly." As part of a group formed in the Business
Information Systems Program, (BISP), Haight and his
colleagues were charged with the task of creating a more
rational programming environment for the AT&T pro-
grammers. "Basically," he explains, "we ended up trying to
give all these people a cheap text editing front end for
interactive program entry." Haight and his colleagues had
experience with the UNIX program development system and
they used it to create the PWB - a Programmer's Workbench
facility that eventually included over 300 tools.
 The Programmer's Workbench (PWB) created at Bell Labs
in response to this need, encouraged the development of
machine independent programming tools. "Each tool," they
maintained, "must now function for programmers developing
code for a number of different vendor machines.... One is
thus forced into a more stable and generalized software
development approach which should be more applicable to
new machines."(12)
 The PWB was conceived of in mid April 1973, installed on
the first workbench computer in October 1973 (PDP 11/45)
and by 1977 the Programmer's Workbench computers were
serving 1000 developers. Eventually, it was used to write the
thousands of lines of computer code needed for the develop-
ment of the 5ESS switch that AT&T was installing.(13)
 The contribution of UNIX to the creation of such advances
in the programming profession needs to be studied and built
on. The problems of software development are the difficult
problems that the computer revolution has thrust on center
stage.
 Writing in a time of similar technological change, Denis
Diderot, who was the editor of the Great French Encyc-
lopedia (Encyclopédie, ou dictionaire raissoné des sciences,
des arts et des métiers) realized the need to catalog and
graphically present drawings of the tools and industrial
processes in use in industry up to that time. Though he was
attacked for revealing the secrets of the trades, this work
made it possible for others to study the level of tool develop-
ment in use and improve on it.
 In his book The History of the Machine (NY, 1979),
Sigvard Strandh describes how tool production had been at
a standstill from the middle ages until the early days of the
industrial revolution. He explains that there were previous
plans for building some of the components of the steam
engine, but the tools that would make doing so possible were

not yet available.
 The work of those like Diderot to publish descriptions of
what knowledge was known in the production of tools and
industrial processes, helped to advance the state of the art of
the technology of tool production, as they made it possible to
build on what had been achieved.
 In an article describing how the PWB was ported to the
IBM System/370, the authors write that there were at the time
300 UNIX or C tools that were part of the Programmer's
Workbench. Sadly, many of those tools no longer seem to be
available. Commenting on the state of availability of UNIX
tools, another UNIX pioneer, John Mashey observed, "Our
ability to organize software and make it available has lagged
our ability to write it." (14) Also, the concept of a software
component catalog, first mentioned by Doug McIlroy in 1968
before the creation of UNIX, and then reintroduced in the
Bell Labs Journal articles(15) needs to be reviewed and
reestablished as a goal. The scientific principle that Plaugher
emphasizes, is that the only way to make substantial progress
in any field is by building on the work of others. Just as
UNIX was built on the lessons that Ritchie and Thompson
and others learned from the experience of CTSS and the early
Multics collaboration, so it is helpful to learn from the
experience of UNIX in order to make any further advances.
That is the challenge that the 25th anniversary of UNIX puts
on the agenda for those who want to advance. As Henry
Spencer and Geoff Collyer wrote in their article "News Need
Not Be Slow": "To know how to get somewhere, you must
know where you are starting from."

Notes

(1) Louis Henry Morgan, Ancient Society, Chicago, 1877,
pg.4
(2) ibid., pg. 43
(3) Fred Brooks Jr. explains that "Software is invisible
and unvisualizable.... The reality of software is not
embedded in space." from "No Silver Bullets," UNIX
Review, Nov. 1987, pg. 41.
(4) "Microcomputer Control of Apparatus, Machinery, and
Experiments" by B. C. Wonsiewicz, A. R. Storm, and J. D.
Sieber, "The Bell System Technical Journal," July-August
1978, vol 57, no. 6, pt 2, pg. 2211.
(5) "Programmer's Workbench — A Machine for Software
Development," Communications of the ACM, Oct. 1977, vol
20, no 10. pg. 746
(6) ibid.
(7) ibid.
(8) "Minicompilers, preprocessors and other tools," in
AFIPS Conference Proceedings, vol 44, 1975, pg. 281.
(9) "UNIX on My Mind," Proc. Virginia Computer Users
Conference, vol 21, Sept 1991, Blacksbury, pg. 1-6.
(10) From e-mail correspondence.
(11) "Interview with Dick Haight," UNIX Review. May 1986.
(12) "Programmer's Workbench," pg. 749.
(13) See "A UNIX System Implementation for System/370" by
W.A. Felton, G. L. Miller, and J. M. Milner, Bell
Laboratories Technical Journal, October, 1984,
(14) "UNIX Leverage - Past, Present, Future", Usenix
Winter 1987 Conference Proceedings, pg. 8
(15) See for example "Software Tools and Components" by
R. F. Bergerson and M. J. Rochkind and "Cable Repair
Administration System," by P. S. Boggs and J. R. Mashey,
pg. 1275 in Bell System Technical Journal, July-August
1982

Page 14

The Development of Usenet News:
The Poor Man's ARPAnet

[Editor's Note: The following article is part 2 of "From
ARPAnet to Usenet" which appeared in vol. 5 no. 3/4 of the
Amateur Computerist. Since Usenet News demonstrates the
power of UNIX, we felt it appropriate to include it as part of
this special issue. Also Usenet News celebrates its 15th
anniversary this year.
 The ARPAnet provided an exciting experimental environ-
ment for those who had access to U.S. Department of
Defense contracts. Many of the computer science com-
munity, however, did not have such access, but also wanted
to be part of an online community. Graduate students in
computer science helped to broaden access to the wonders of
the ARPAnet by creating Usenet News, which they origi-
nally referred to as "The Poor Man's ARPAnet."]

Part II
 Usenet News was born in 1979 when Tom Truscott and
Jim Ellis, graduate students at Duke University in Durham,
N.C., and Steve Bellovin, a graduate student at the Univer-
sity of North Carolina in Chapel Hill, N.C., conceived of
building a computer network to link the computers at their
different schools together. Using homemade 300 baud
autodial modems and the UNIX to UNIX copy program
(uucp) that was being distributed with the UNIX Operating
System, Version 7, Steve Bellovin wrote some simple UNIX
shell scripts to have the computers automatically call each
other up, search for changes in the files, and then copy the
changes.
 While e-mail and mailing lists had been common on the
ARPAnet, Gregory G. Woodbury, a Usenet pioneer at Duke
describes how "News allowed all interested persons to read
the discussion, and to (relatively) easily inject a comment
and to make sure that all participants saw it."(1) "The 'ge-
nius' of the netnews," he explains, "was to see that the shell,
the find command, and uucp would allow categorized news
discussions to be shared between machines that were only
connected by a serial line."
 Soon three computer sites, duke, unc and phs (i.e. at Duke
[duke], at the University of North Carolina [unc], and at the
Physiology Department of the Duke Medical School [phs])
were hooked together and a simple program was running
connecting the three sites. Woodbury explains that Dennis
Rockwell, a graduate student in Computer Science at Duke,
had gotten a Systems Programmer job for the Physiology
Department at the Medical School. When Physiology de-
cided to use UNIX for the project that Rockwell was work-
ing on, "then it was a matter of convenience to have a hard-
wired circuit between the two machines for moving pro-

grams back and forth (between CS and Physiology.)" And
since Rockwell, "migrated back and forth between Physiology
and CS, he was instrumental in getting the connection to 'phs'
implemented," Woodbury recalls, "so that he didn't have to
spend his working time across the street at CS."
 Woodbury reports that the Netnews program that was cre-
ated, using UNIX shell scripts, was slow. Tom Truscott ex-
plains that the Usenet pioneers did not intend to use the shell
scripts for any real news traffic.
 Stephen Daniel, a new graduate student in computer science
at Duke in 1979 describes how "a news program written I
believe by Steve Bellovin as a collection of shell scripts was
already working, but it was slow, taking upwards of a minute
of time on an unloaded PDP 11/70 to receive an article. I got
involved," he explains, "when I happened to drop in on a
conversation between Tom Truscott and Jim Ellis who were
complaining about how slow this news program was. I sug-
gested that if it was so slow it could easily be rewritten in C
to run faster. I soon found myself volunteering to do just
that." Daniel agreed to write the program in C along with
Tom Truscott. This was the first released C version of Net
News, which was known as A News.
 In January of 1980, Jim Ellis presented a talk at Usenix, the
UNIX users association for technical and academic users. He
tells how there were 400 people at the conference with no
parallel sessions, so many came to hear his talk describing the
Netnews uucp program.
 The invitation Ellis handed out at the January 1980 confer-
ence explained: "The initially most significant service will be
to provide a rapid access newsletter. Any node can submit an
article, which will in due course propagate to all nodes. A
'news' program has been designed which can perform this
service. The first articles will probably concern bug fixes,
trouble reports, and general cries for help. Certain categories
of news, such as 'have/want' articles, may become sufficiently
popular as to warrant separate newsgroups. (The news pro-
gram mentioned above supports newsgroups.)"
 "The mail command provides a convenient means for re-
sponding to intriguing articles. In general, small groups of
users with common interests will use mail to communicate. If
the group size grows sufficiently, they will probably start an
additional news group...."
 "It is hoped that USENIX will take an active (indeed cen-
tral) role in the network. There is the problem of members not
on the net, so hardware newsletters should remain the stan-
dard communication method. However, use of the net for
preparation of newsletters seems like a good idea."(2)
 In the scientific tradition of gaining knowledge from the
testing of one's theory in practice, the pioneers of Usenet
invited others to participate in the network and then to work
out the problems that developed. Their Invitation urged: "This
is a sloppy proposal. Let's start a committee. No thanks! Yes,
there are problems. Several amateurs collaborated on this

Page 15

plan. But let's get started now. Once the net is in place, we
can start a committee. And they will actually use the net, so
they will know what the real problems are."
 The software for the A News program for Usenet News
was part of the conference tape for general distribution at the
Delaware Summer 1980 USENIX meeting. The handout dis-
tributed at this conference explained: "A goal of Usenet has
been to give every UNIX system the opportunity to join and
benefit from a computer network (a poor man's ARPAnet, if
you will)"(3)
 Describing why the term "poor man's ARPAnet" was used,
one of the students, Stephen Daniel, explains, "I don't re-
member when the phrase was coined, but to me it expressed
exactly what was going on. We (or at least I) had little idea
of what was really going on on the ARPAnet, but we knew
we were excluded. Even if we had been allowed to join,
there was no way of coming up with the money. It was com-
monly accepted at the time that to join the ARPAnet took
political connections and $100,000. I don't know if that as-
sumption was true, but we were so far from having either
connections or $$ that we didn't even try. The 'Poor man's
ARPAnet' was our way of joining the CS community (Com-
puter Science -ed), and we made a deliberate attempt to
extend it to other not-well-endowed members of the com-
munity. It is hard to believe in retrospect," he writes, "but we
were initially disappointed at how few people joined us. We
attributed this lack more to the cost of autodialers than lack
of desire."(4)
 Unlike the ARPAnet, Usenet News was available to all
who were interested as long as they had access to the UNIX
operating system (which in those days was available at a
very minimal cost to the academic community.) Posting and
participating in the network was available at no cost besides
what the colleges paid for equipment and the telephone calls
to receive or send Netnews. Therefore, the joys and chal-
lenges of being a participant in the creation of an ever ex-
panding network, the experience available to an exclusive
few via the ARPAnet, was available via Usenet News to
those without political or financial connections — to the
common-folk of the computer science community.
 As Daniel notes, Usenet pioneers report that they were
surprised at how slowly Usenet sites expanded at first. But
when the University of California at Berkeley (ucb) joined
Usenet, links began to be created between Usenet and the
ARPAnet. University of California at Berkeley was a site on
the ARPAnet. At first, it is reported, mailing lists of discus-
sions among Arpanauts (as they were called by Usenet users)
were poured into Usenet. Also by 1979-80, ucb was under
contract to ARPA to provide a version of UNIX (Berkeley
Software Distribution) for the ARPA contractors that were
going to be upgraded to VAX computers.
 This first connection between the ARPAnet and Usenet
News, only contributed to "the sense of being poor cousins,"

Daniel explains, "It was initially very hard to contribute to
those lists, and when you did you were more likely to get a
response to your return address than to the content of your
letter. It definitely felt second class to be in read-only mode
on human-nets and sf-lovers." (Those were two popular
ARPAnet mailing lists. The human-nets mailing list, accord-
ing to Tom Truscott, was a discussion of the implications of
world-wide ubiquitous networking. This network of the future
was referred to as "world net." Truscott reports that "it was a
very interesting mailing list and possible only due to the abil-
ity of the network itself to permit those interested in this ob-
scure topic to communicate." -ed)
 Daniel clarifies the different philosophy guiding the devel-
opment of Usenet as opposed to that of the ARPAnet. He
explains, "Usenet was organized around Netnews, where the
receiver controls what is received. The ARPAnet lists were
organized around mailing lists, where there is a central con-
trol for each list that potentially controls who receives the
material and what material can be transmitted. I still strongly
prefer the reader-centered view," he concludes.
 With the increasing connections to the ARPAnet from Use-
net, the numbers of sites on Usenet grew. A map from April
1981 shows the number of different sites on Usenet during
this early period.
 Usenet as of April 5, 1981(5)

 reed phs
 \ / \
 decvax---duke---unc
 | / \
 | mhtsa--research mh135a
 ucbopt---+ | | \ |
 | | | eagle ihnss vax135
 ucbcory---\ | | | / /
 >-------ucbvax– ------+------+-------------\
 ucbarpa---/ | | | \
 | sdcarl sdcsvax menlo70--hao ucsfcgl
 ucbonyx--+ \ / |
 phonlab sytek

 While the ARPAnet made possible electronic mail and
discussion groups via electronic mail (i.e. mailing lists),
Usenet made it possible for participants to post any message
they wanted and it could be seen by everyone.
 Pioneers from the early days of Usenet point out that origi-
nally there were a fair number of people who read all the
posts. However, as Usenet started to grow there were differ-
ent newsgroups that got set up and they were grouped by
subject area, and the number of articles became too large for
any individual to read them all.
 Subject areas on Usenet range from the discussion of autos
(i.e. rec.autos) to the science of economics (i.e. sci.econ).
There are many computer related groups (e.g. comp.misc,
comp.unix.misc, etc) Originally, the creators of Usenet felt
that most of the posts would be related to UNIX problems and
bugs. But from the earliest days of Netnews, there was a
broad range of discussion.(6)
 Often there have been problems that have developed in

Page 16

Usenet. The system administrators and others discuss the
problem and argue out their differences. Sometimes what is
called a "flame war" develops where people argue out their
differences online.
 The network has proven especially valuable in helping
system administrators and programmers deal with the prob-
lems they run into with their work. Researchers using the
network have found the collaborative work it makes possible
very exciting.
 Usenet now reaches over 10 million people and has more
than 5,500 newsgroups. And the number of both is always
growing. It has been made possible by the cooperative work
of the participants and the programming tools of UNIX and
C that were created by the research programmers at Bell
Labs and added to by programmers and users around the
world. Writing their programs using UNIX and C, partic-
ipants in the UNIX community have written the A, B and C
News and INN versions of Netnews which have made it
possible for Usenet to accommodate an ever expanding num-
ber of megabytes of news from an ever expanding number of
computer users. Also other programmers have contributed
their time and labor to create newsreaders, mail programs
and other software needed for the ever growing community
of people participating in Usenet News.(7)
 After the original porting of the ARPAnet mailing lists to
Usenet, connections with the ARPAnet increased. Eventu-
ally, Usenet traffic was allowed to go through the ARPAnet.
Steve Bellovin describes how the early porting of mailing
lists like Human Nets and Sci-Fi Lovers onto Usenet was a
force to broaden access to ARPAnet. He explains: "The first
gateway of ARPAnet mailing lists to Usenet was an early
force to have gateways within ARPAnet. Gateways to the
ARPAnet were on the side things and in all likelihood not
officially sanctioned. However, this provided the impetus for
gateways into ARPAnet. This was the pressure on the
ARPAnet to provide service to a larger number of people —
a first step to transform the ARPAnet to become a part of the
backbone of the Internet."(8)
 In 1987, the U.S. government set up the NSFnet under
pressure from academic scientists and computer scientists to
provide additional access to the developing network. The
NSFnet replaced the ARPAnet as the backbone for the Inter-
net and the ARPAnet was decommissioned in 1989.(9)
 In its early years, Usenet was mainly transported via uucp
using the telephone lines. A protocol was later created for
Usenet to make it possible for it to ride on the ARPAnet and
then the NSFnet and along the Internet, and thus cut down
on phone costs for transporting it.
 Following are some statistics that have been gathered of
Usenet growth:
 1979: 3 sites, 2 articles a day
 1980: 15 sites, 10 articles a day
 1981: 150 sites, 20 articles a day

 1982: 400 sites, 50 articles a day
 1983: 600 sites, 120 articles a day
 1984: 900 sites, 225 articles a day
 1985: 1,300 sites, 375 articles per day, 1+Megabyte per/day
 1986: 2,500 sites, 500, 2MB+ articles a day
 1987: 5,000 sites, 1000, 2.5MB+ articles a day
 1988: 11,000 sites, 1800, 4MB+ articles a day

 Usenet sites posted about 26,000 articles per day to 4902
groups for 65 total megabytes (52 without headers) over the
two week period before 8 March, 1993.(10)
 Usenet has continued to grow and there are times that it
seemed it would break under its ever increasing expansion.
This concern is referred to as "The imminent death of the net
is predicted" and has became a source of net folklore. During
such difficult periods, mailing lists have been set up to dis-
cuss the problems. In one such discussion group, several of
the participants put forward plans for a substantial change in
Usenet, while other participants urged that it was crucial to
first figure out the exact nature of the problem, if one wants
to find a solution to that problem.(11)

[to be continued]

Notes:

(1) Gregory Woodbury in a post on Usenet News on April
12, 1993. "Unfortunately," Woodbury regrets, "I don't
recall who had this flash of insight, and the 5 folk
honored by the EFF (Electronic Frontier Foundation - ed)
formed the core of folks who developed the idea into a
real working system." (The Electronic Frontier Foundation
gave an award to Tom Truscott and Jim Ellis and cited
Steve Bellovin, Stephen Daniel and Dennis Rockwell for
their creation of Usenet at its 1993 awards ceremonies.)
(2) "Invitation to a General Access UNIX Network" by Tom
Truscott, Duke University. Copy from Usenet History Ar-
chives.
(3) Copy in the Usenet History Archives.
(4) From E-mail dated January 25, 1993, Usenet History
List.
(5) Map from Usenet History Archives.
(6) See talk presented at the Michigan Association of
Computer Users in Learning on "The Evolution of Usenet
News: The Poor Man's ARPAnet," March 15, 1993.
(7) See for example Gene Spafford's "Usenet Software:
History and Sources", available on Usenet News and Greg-
ory G. Woodbury's "Net Cultural Assumptions" which has
been posted on Usenet News.
(8) From Usenet History Archives.
(9) The CSNet created for Science and Computer faculty at
Universities not connected to the ARPAnet was part of the
pressure that led to the NSF Net. See description in "The
Social Forces Behind the Development of Usenet News" in
The Amateur Computerist, vol 5, no 1-2, Winter/Spring,
1993.
(10) Early statistics to 1988 compiled by Gene Spafford.
(Oct 1, 1988, IEFT Meeting) Latest statistics by David C.
Lawrence.
(11) See, for example, Usenet-II Mailing List of Nov. 10,
1985 in the Usenet History Archives. One of the posters
to the list commented, "I don't want to be fixing the
wrong problem."

Page 17

What the Net Means to Me
by Michael Hauben

(hauben@columbia.edu)

 The Net means personal power in a world of little or no
personal power for those other than on the top. (Those on
top are called powerful because of money, but not because
of thoughts or ideas.) The essence of the Net is Communica-
tion: personal communication both between individual peo-
ple, and between individuals and those in society who care
(and do not care) to listen. The closest parallels I can think
of are:

- Samizdat Literature in Eastern Europe.
- People's Presses
- The Searchlight, Appeal to Reason, Penny Press, etc.
- Citizen's Band Radio
- Amateur or Ham radio.

 However the Net seems to have grown farther and to be
more accessible than the above. The audience is larger, and
continues to grow. Plus communication via the Net allows
easier control over the information — as it is digitized and
can be stored, sorted, searched, replied to, and easily adapted
to another format.
 The Net is the vehicle for distribution of people's ideas,
thoughts and yearnings. No commercial service deals with
the presentation of peoples' ideas. I do not need a computer
to order flowers from FTD or clothes from the Gap. I need
the Net to be able to voice my thoughts, artistic impressions,
and opinions to the rest of the world. The world will then be
a judge as to if they are worthy by either responding or ig-
noring my contribution.
 Throughout history (at least in the USA), there has been a
phenomenon of the street-corner soapbox. People would
"stand up" and make a presentation of some beliefs or
thoughts they have. There are very few soapboxes in our
society today. The '70s and '80s wiped out public expression.
The financial crisis substituted a growing sentiment of make
your money or shut up. In the late '80s and early '90s, the Net
has emerged as a forum for public expression and discus-
sion. The Net is partially a development from those who
were involved with the Civil Rights movement, anti-war
struggles and free speech movements in the '60s. The per-
sonal computer was also a development by some of these
same people.
 Somehow the social advances rise from the fact that people
are communicating with other people to help them under-
mine the upper hand other institutions have. An example is
people in California keeping tabs on gas station prices
around the state using Netnews and exposing gougers. An-
other example is people publically reviewing music them-

selves — rather than telling others," you should really go buy
the latest issue of magazine 'X' (Rolling Stone, etc) as it has
a great review." This is what I mean by people power —
people individually communicating to present their view on
something rather than saying go get commercial entity 'Xs'
view from place 'Y'. This is people contributing to other peo-
ple to make a difference in people's lives. In addition, people
have debated commercial companies' opposition to the selling
of used CDs. This conversation is done in a grassroots way —
people are questioning the music industry's profit making
grasp on the music out there. The industry definitely puts
profit ahead of artistic merit, and people are not interested in
the industry's profit making motive, but rather great music.
 The Net is allowing two new avenues not available to the
average person before:
1) A way of having one's voice heard.
2) A way of organizing and questioning other people's experi-
ences so as to have a better grip on a question or problem.
Thus in some ways there is a regaining control of one's life
from society.
 These are all reasons why I feel so passionately about 1)
keeping the Net open to everyone, and having such connec-
tions being available publicly, and 2) Keeping the Net un-
commercialized and un-privatized. Commercialism will lead
to a growing emphasis on OTHER uses for the Net. As I said
before, it is NOT important for me to be able to custom order
my next outfit from the Gap or any other clothing store. Com-
panies should develop their own networks if they wish to
provide another avenue to sell their products. In addition,
commercial companies will not have it in their interest to
allow people to use the Net to realize their political self.
Again let me reemphasize, when I say politics, I mean power
over one's own life and surroundings. And this type of politics
I would call democracy.

Plumbing The Depths Of UNIX:
File Redirection and Piping

by Sue D. Nimms

[Author's Note: This article begins by describing the purpose
of a shell; examples are given to show simple file redirection
and piping; and concludes with a few real-life scenarios that
involve relatively complex text-manipulation and processing
using UNIX.]

 A shell is a text-based command interpreter through which
a user can interact (run programs and utilities) with UNIX.
Similarity, a graphical user interface (GUI) is a graphical
shell that, while easing the burden of typing, restricts access
to commands otherwise available to the command-line shell
user.
 Just as there are various GUI shells, there exist various

Page 18

command-line shells: the Bourne Shell (sh), the C-Shell
(csh), the Korn Shell (ksh), the Bourne Again Shell (bash)
and the Plan-9 Shell (rc); the Bourne Shell (sh) is the most
ubiquitous shell being available on all UNIX platforms.
 The differences among the shells, for the most part, in-
clude:
 - special features unique to one (like C shell's job-control
 — a feature designed to ease the management of pro-
 grams running in the background)
 - the syntax of internal commands (for-loop, while-loop
and
 if/else constructs)

(Note: bash combines the best features of the sh, csh and
ksh)
 The shells allow customizing of the user's environment, the
prompt, etc., and writing shell scripts. A shell script is a
group of commands saved in a file and executed by giving
the name of the file rather than typing in the commands
interactively.
 These differences aside, the underlying concepts of pro-
gram execution remain constant no matter what shell one
uses. Each program, when run, has three defaults (file-des-
criptors) associated with it:
 1) it expects input from the keyboard (stdin: standard
input),
 2) it outputs normal text (stdout: standard output) to the
screen and,
 3) it also outputs error messages (stderr: standard error) to
the screen.
 These defaults can be reset, by the user, using redirection
and piping to suit the appropriate situation.
 The simplest example of redirecting output is saving the
output of a UNIX command to a file. The ls command lists
the contents of a directory to the screen, by default. This
output can be redirected to a file using the symbol > placed
between the command and a filename (the file will be cre-
ated, if it does not exist):

EXAMPLE 1.

 ls > foo

 The output of ls (i.e. the list of files) is now contained in
the file named 'foo'.

EXAMPLE 2.

 ls -l > foo

 The -l option to the ls command indicates that the user

wishes a long-form listing (a listing that shows file-size, cre-
ation-date, ownership, etc). This example demonstrates that
the redirection symbol and filename must come after any
options.
 The syntax for redirecting input is similar to that of redi-
recting output; the < symbol is used instead, followed by the
filename whose contents should be in a form the command
expects them.

EXAMPLE 3.

 mail elf < foo

 The program mail can be used to both read and deliver
electronic mail (e-mail) to other users. In the above example,
the file 'foo' contains the directory listing created in Example
1. This file is mailed to a user whose user-id is 'elf'.
 Again, the redirection symbol and filename come after any
options (in this case, the user-id of the recipient).
 The command-pipe (represented by the symbol | is used to
channel the output of one program into the input of another.
It is placed between two commands.

EXAMPLE 4.

 If a directory contains 100 files, a terminal-screen 25 lines
long is not sufficient to view all the file-names; they will
scroll off the screen. The more program is a pager, i.e. it
pauses after every page for an indication (a key press) to con-
tinue.

 ls -l | more

 In this example, the output of ls (100 lines) is piped into the
more program. The more program displays 24 lines of output
of the ls command and pauses.

EXAMPLE 5.

 ls -l | tr '[a-z]' '[A-Z]' | more

 In this example three commands are used with pipes be-
tween them. The tr program is used to translate all lower-case
characters (a-z) taken from its input (the ls -l command) to
upper-case characters (A-Z). The output of the tr program is
then piped into more.
 Any number of commands may be run with piping between
them.

Page 19

SCENARIO 1.

 Suppose you are a professor that has a teaching assistant
who performs the grading of test-papers (150 students) and
submits the marks to you by E-mail. To maintain privacy,
only the student-numbers (in the first column) and marks
(the second column) are submitted:

 0124879 99
 0132988 73
 1987724 55
 etc.

 This list is saved in a file called 'marks-list'. It is sorted nu-
merically on the first field, the student numbers.
 You have a list of student names and student numbers in a
file called 'class-list':

 0124879 Smythe,J.
 0132988 Smyth,K.
 1987724 Smith,L.
 etc.

 However, for a meeting, you require the student names and
marks, essentially, a selective merging of the two files: the
second field of the 'class-list' (the names file) and the second
field of the 'marks-list' (the marks file).
 The solutions to this problem are numerous. Two solutions
will be demonstrated here; the more involved one first.

SOLUTION 1.

 We begin by cutting the required fields from each of the
files. We need the second field from both the 'class-list' (i.e.
the names) and the 'marks-list' (the marks).
 First we search for a command that fits our purpose by
using the apropos command and the key-word "cut". We
find, among others, the cut command. At the $ prompt we
type:

 $ apropos cut

We find: ...
 :
 cut (1V) - remove selected fields from each line of
a file
 :

 To use the man command to view the manual-page for cut,
we type:

 $ man cut

 We learn we can cut field two (f2), specify that the field-
separators are spaces ('-d ') [note: there is a space after the d],
take input from the 'marks-list' file and save the output in the
file called 'marks':

 cut '-d ' -f2 < marks-list > marks

 Similarly, we can cut field two (f2) of the 'class-list', the
names and save the output in the file called 'names':

 cut '-d ' -f2 < class-list > names

 Since we now wish to join the two files column by column,
we attempt an apropos on the keyword "column", which
yields the command pr:

 pr (1V) - prepare file(s) for printing, perhaps in multi-
ple columns
 :
We find that:

 pr -m names marks > meeting-list

finishes the task.

SOLUTION 2.

 There is an easier way. An apropos on the keyword "join"
yields:

 join (1) -relational database operator

 The join command handles this task with ease, precluding
the extra steps of cutting the appropriate fields in the files:

 join -o 1.2 2.2 class-list marks-list > meeting-list

 The output ('-o' option) contains field two ('1.2') [file1,
field2] of the first file 'class-list' and field two ('2.2') [file2,
field2] of the second file 'marks-list':

 Smythe,J. 99
 Smyth,J. 73
 Smith,J. 55

Page 20

 Alternatively,

 join -o 1.2 1.1 2.2 class-list marks-list > meeting-list

would have resulted in the student-number (first field of the
first file) being included between the name and mark.

 Here, this one line accomplishes the whole task. Repetitive
tasks do not lend themselves to an interactive user interface;
the tedium of repeatedly typing in commands becomes tire-
some. Any one command or set of commands you would
normally type in interactively can be placed in a file, called
a shell-script, and submitted for execution. The solution to
SCENARIO 1 as a shell script would look like this (saved in
a file perhaps called 'make-marks'):

 #!/bin/sh
 cut '-d ' -f2 < marks-list > marks
 cut '-d ' -f2 < class-list > names
 pr -m names marks > meeting

 There are two ways to execute this file, it can be given to
a shell from stdin. At the prompt type:

 sh < make-marks

or it can be given execute permission:

 chmod a+x make-marks

and executed by typing in the file-name ('make-marks') at the
shell-prompt.

 UNIX was designed to be greater than the sum of its parts.
Simple tools used as building blocks, with pipes acting as
the "glue", create ever more sophisticated tools. The UNIX
user, using these tools can become a toolmaker and create
tools customized for his or her own purposes.

Note:
 The key to finding the correct tool for the task at hand is
judicious use of the man -k (a.k.a apropos) followed by a
keyword (refer to SOLUTION 1). Remember that UNIX has
been evolving for over a decade and many tasks we encoun-
ter can be classified into a range for which there already
exists a tool (and one that has been thoroughly debugged).
 The paradigm of simple tools used to build sophisticated
tools does not preclude the creation of sophisticated tools as
an end unto themselves. perl (Pathologically Eclectic Rub-
bish Lister), written by Larry Wall, is a tool that combines
the power of the interactive shell (sh) and the C program-

ming language. It has established itself as a very powerful
tool that can at times be used as a replacement for creating
tools that would otherwise require writing a C program.

Using UNIX Tools to Design A Tool for
A Researcher's Toolkit

[Editor's Note: The following description of some of the pro-
cesses of creating a tool for a researcher's toolkit is intended
not as a tutorial or a how-to article, but rather to demonstrate
how UNIX tools can be used to design and create new tools
which can be customized to one's own needs and purposes. It
is our hope that this article will demonstrate why the UNIX
programming environment is so important. The book The
UNIX Programming Environment, by Rob Pike and Brian W
Kernighan (N.J., 1984) is a very fine introduction to the
power of UNIX tools.]

 The following describes the creation of a UNIX tool. This
tool is the first of several planned as part of a Researcher's
Toolkit, a UNIX based toolkit for researchers to be able to
handle and manipulate their data. The most important aspect
of this toolkit is that it is intended to help researcher's do
intellectual work that will enhance their research using these
UNIX tools.

I. Form of Files

 In the process of working on research on the history and
development of UNIX, I felt it would be valuable to have
research tools using UNIX to help with my research. I de-
cided to see if I could create tools that would not only help
me with tasks that might be drudgery, but more importantly,
tools that would give me a way to have the computer help me
as an intellectual aid.
 I wanted the computer to be able to help me to search
through files to be able to see which files contained various
ideas and then to provide me with the context of the ideas.

 A) To do this I had to first create a standard format for the
files I typed in. Modeling what I did on what I learned from
working through The UNIX Programming Environment I
named my files consistently, typing notes from each of my
sources into individual files which I named:

 unixtool.000
 unixtool.001
 unixtool.002
 .
 .
 .

Page 21

 unixtool.041
 unixtool.042
 unixtool.043

 B) Each of the files contained the name of the file as the
top line of the file and then the name of the source, author,
publication information and then the quotes I typed with
page references.
 For example, if I type $ cat unixtool.001 I will get:

unixtool.001

from "The Bell System Technical Journal" , July-August
1978, vol 57, no 6, pt 2

UNIX Time-Sharing System:

Preface by T. H. Crowley

pg. 1897-1898

 "Programming activities under way at Bell Laborato-
ries cover a very broad spectrum. They range from basic
research on ...

II. Form that the files took in my directory

 Following is the form the files took in my directory.

$ ls -als unixtool.0*

3 -rw-r--r-- 1 ronda users 2159 Jan 31 11:54 unixtool.000

3 -rw-r--r-- 1 ronda users 2481 Jan 26 22:48 unixtool.001

7 -rw-r--r-- 1 ronda users 7036 Jan 26 22:49 unixtool.002

 .

 .

 .

8 -rw-r--r-- 1 ronda users 7964 Mar 12 02:05 unixtool.045

8 -rw-r--r-- 1 ronda users 7985 Mar 12 02:37 unixtool.046

6 -rw-r--r-- 1 ronda users 5938 Mar 12 13:16 unixtool.047

III. Then I used a series of UNIX tools to search the files.

 The first tool was a tool to search for a keyword (expres-
sion) in my files using the UNIX tool grep. I could type
from the keyboard:

$ grep -n keyword unixtool.0*

 I got a listing of filenames, the line number of the key-
word, and one line (with the keyword in it), separated by
colons. I then made this into a shell command which I could
enter from the command line and enter the keyword by using
$1. The command was named nu.grep

$ cat nu-grep
grep -n $1 unixtool.0*

[Note: I use cat to show this one line file. The file could be
created with vi or other editor or with cat.]

 I made certain the permissions on the file nu.grep were set
so I could execute the file.

$ chmod 755 nu.grep

 Thus typing from the keyboard the command nu.grep and a
keyword (e.g. CTSS), I got a listing of the filename, the line
number of the keyword, and one line with the keyword in it,
separated by colons.

$ nu.grep CTSS

unixtool.004:14:CTSS system. This claim is intended as a

complement to both U NIX

unixtool.004:15:and CTSS. Today, more than fifteen years

after CTSS was born, few

 .

 .

 .

unixtool.014:367: in turn been inspired by J. Saltzer's Runoff

Program on CTSS

IV. The Value of Making a Tool

 I found that the tool I was creating would help me to iden-
tify both the file name, the line number of the keyword and
the line containing the keyword. This was an intellectual aid
as it helped me to identify something that I might be inter-
ested in pursuing further or something that was interesting
that I might not have realized.
 For example, I found there were ideas highlighted through
this process that were helpful for me to focus on in doing my
research.

V. Finding the Context of the Reference

 Next I wanted to be able to look up the context of the refer-
ences that I found in the keyword search. I found I could
make a tool using sed which would give me the context of the
keyword. The sed tool I used was:

sed -n 'x1,x2p' filename

 After locating the following line with the grep tool:

unixtool.014:367: in turn been inspired by J. Saltzer's
Runoff Program on CTSS

Page 22

I decided that I would look at five lines above and five lines
below the line number of the keyword. The line number of
the keyword was 367. Thus my sed tool was:

$ sed -n '367-5,367+5p' unixtool.041

VI - A Tool to Automate the Context Output

 I wanted a tool that would automate this process by giving
me first a list of the references from all the files with the
keyword in it and then a printout containing the ten line
context of the keyword.
 I wanted to print the context of the keyword or pattern.

VII. grep to list the fields, awk to read them off, sed to do
context

 To get the context of the keyword, awk was used to read
off the fields of the listing produced by grep. Then I used
sed.
 For example, making a new shell script nu.grep2:

$ cat nu.grep2
grep -n $1 unixtool.0* | awk -f nu.awk | sh

and a shell script nu.awk

$ cat nu.awk
 BEGIN {FS=":" }
 {print "echo", $1, $2 "------------------"}
 $2 > 5 {print "sed -n ' " $2-5 "," $2+5 "p' ",$1}
 $2 < 6 && $2 > 1 {print "sed -n ' " 2 "," $2+5"p' ", $1}
 {print "echo =============================="}

 (Make sure permissions are set on both nu.grep2 and
nu.awk so that files can be executed.)

$ chmod 755 nu.grep2
$ chmod 755 nu.awk

 Using the shell script nu.grep2 with a keyword:

$ nu.grep2 CTSS

produced contextual references, including the following, for
example:

 unixtool.004 14------------------

 "In most ways, UNIX is a very conservative system. Only
a handful of its ideas are genuinely new. In fact, a good case
can be made that it is in essence a modern implementation of
M.I.T.'s CTSS system. This claim is intended as a compli-

ment to both UNIX and CTSS. Today, more than fifteen years
after CTSS was born, few of the interactive systems we know
of are superior to it in ease of use; many are inferior in basic
design."
 from D. M. Ritchie, "A Retrospective", from
 The Bell System Technical Journal", vol 57,
 No. 6, part 2, July-August 1978, pg. 1948.

VIII. Following is the resulting tool which I called signif.

[Note: Make one shell script for signif, and another script for
contex.]
 $ cat signif

 #!/bin/sh

 #signif

 #make sure that there are at least two args to the command

 case $# in

 0) echo usage:;

 echo " " 'basename $0' keyphrase files

 exit ;;

 1) echo usage:;

 echo " " 'basename $0' keyphrase files

 exit ;;

 esac

 if egrep -n $* /dev/null

 then

 contex $*

 else

 echo Sorry

 fi

 $ cat contex

 #!/bin/sh

 #contex

 awkfile=/tmp/nu.awk.$$

 case $# in

 0) echo usage:;

 echo " " 'basename $0' keyphrase files

 exit ;;

 1) echo usage:;

 echo " " 'basename $0' keyphrase files

 exit ;;

 esac

cat>${awkfile} <<END_AWK_SCRIPT

 BEGIN {FS=":" }

 {print "echo -n", \$1 ":" \$2 ":" }

 {print "sed -n ' " \$2 "p' ",\$1}

 {print "echo",":"}

 \$2 > 5 {print "sed -n ' " \$2-5 "," \$2+5"p' ",\$1}

 \$2 < 6 && \$2 > 1 {print "sed -n ' "2"," \$2+5 "p' ", \$1}

 {print "echo =============================="}

END_AWK_SCRIPT

 #echo executing:

 #echo " egrep -n ${key} $* | awk -f ${awkfile} | sh"

Page 23

 egrep -n $* /dev/null | awk -f ${awkfile} | sh

 /bin/rm -f ${awkfile}

[Editor's Note: make sure you make the shell scripts execut-
able.]

IX. Other versions of the tool:

A tool to list the whole file:

signif-w

#!/bin/sh

#outputs whole files which include the keyword

awkfile=/tmp/nu.awk2.$$

case $# in

 0) echo usage:;

 echo " " 'basename $0' keyphrase files

 exit ;;

 1) echo usage:;

 echo " " 'basename $0' keyphrase files

 exit ;;

esac

cat>${awkfile} <<END_AWK_SCRIPT

 BEGIN {FS=":"}

 {print "echo ",\$1 ":" \$2":" \$3}

 {print "cat ", \$1}

 {print "echo =================="}

END_AWK_SCRIPT

echo executing:

echo " egrep -n ${key} $* | awk -f ${awkfile} | sh"

egrep -n $* | awk -f ${awkfile} | sh

/bin/rm -f ${awkfile}

 A tool to list just one line references:

signif-l

#!/bin/sh

make sure that there are at least two args to the command

case $# in

 0) echo usage:;

 echo " " 'basename $0' keyphrase files

 exit ;;

 1) echo usage:;

 echo " " 'basename $0' keyphrase files

 exit ;;

esac

if egrep -n $* /dev/null

then

 echo OK

else

 echo Sorry

fi

Example: $ signif -l tool unixtool.0*

[Tool design and creation was done as part of an independent
study with Dr. Narasimhamurthi at the University of Michi-
gan Dearborn, in Winter 1994.]

C Program
(To grab e-mail addresses from files)

[Editor's Note: The following K&R (Kernighan and Ritchie)
C program was submitted by a beginner programmer. He
called the compiled version findadd and used it in the form:
 $ findadd < file >> addresses]
-------------cut here---------------
/* C program to grab E-mail addresses containing '@' */
#include <stdlib.h>
#include <stdio.h>
#define ADDMAX 100
/* maximum address expected 99 characters */

main()
{
 int c;
 char add[ADDMAX], *find_add();

 while (find_add(add) != NULL) {
 printf("%s\n", add);
 }
 exit(0);
}

char *find_add(add)
char add[];
{
 int c, i, flag;
 c = getchar();
 while (c != EOF)
 {
 /* skip whitespace */
 while (c == ' ' || c == '\t' || c == '\n')
 c = getchar();
 flag = 0;
 i=0;
 while (c != ' ' && c != '\t' && c != '\n' && c != EOF)
 {
 add[i++] = c;
 /* '@' occurs in most e-mail addresses */
 if (c == '@')
 flag = 1;
 c = getchar();
 }
/* \0 ends the string */
 add[i] = '\0';
/*check if string is an address*/
 if (flag == 1)

Page 24

 return(add);
 }
 return(NULL);
}
-------------cut here---------------

New Net Book

 In honor of the 25th Anniversary of the ARPAnet and of
the UNIX operating system, and the 15th Anniversary of
Usenet News, I am proud to announce a net-book. This
net-book provides some of the historical perspective and
social context needed to understand the advance represented
by the global telecommunications network. This net-book is
for those who want to contribute to the care and nurture of
the Net.

 The Book's title is:
 The Netizens and the Wonderful World of the Net:
 An Anthology.

 Any comments on the book would be welcome, as it is
currently in draft form. We are making it available on-line as
we feel it will be helpful for people, and your comments will
help us to make the book more valuable.
 In addition, it would be worthwhile to have the book pub-
lished in a printed edition. Any suggestions towards this
would be appreciated.
 A draft is now available via anonymous ftp at:
 wuarchive.wustl.edu
in the directory:
 /doc/misc/acn/netbook
 The on-line book is also available to browse via gopher on
the gopher server:
 gopher.cic.net
in the directory (or by going through the menus):
 e-serials/alphabetic/a/amateur-computerist/netbook
My .gopherrc entry looks like this:

Name=Netizen's Netbook
Type=1
Port=70
Path=1/e-serials/alphabetic/a/ amateur-computerist/netbook
Host=gopher.cic.net

URL: (For WWW browsers like Mosaic, lynx, cello, etc.)

gopher://gopher.cic.net/11/ e-serials/alphabetic/a/
 amateur-computerist/netbook

or from my homepage at:
http://www.cc.columbia.edu/~hauben/ home.html

under the link to its title.

Click <a href="http://www.cc. columbia.edu/~hauben/home.
 html">here

-Michael Hauben
hauben@columbia.edu

The Linux Movement
by Phil Hughes (phil@fylz.com)

[Editor's note: Linux is a non-commercial version of UNIX
being created by volunteer developers. The Amateur
Computerist welcomes articles about the different flavors of
UNIX that might be available to amateur computerists.
 We want to point out that we differ with the encouragement
in the following article of a commercial future for Linux. Our
experience is that commercial interests try to freeze rather
than develop what they are making money off of.]

 With over 13 years of experience with the UNIX operating
system, I was skeptical when I read that some college student
had implemented a "free UNIX" called Linux. But I felt a
duty to verify that Linux was just a toy. Now, with over a year
of Linux experience, I want you to know that Linux is not a
toy, it offers some advantages over commercial UNIX imple-
mentations and it has a sense of community that you won't
find with other software.
 Linux is a UNIX-like operating system designed specifi-
cally to run on Intel 80386 and higher processors. It offers
virtually all the functionality of other PC-based UNIX sys-
tems along with one amazing side benefit — it's free. To un-
derstand why, you need to look at its history and its creator.
 The Linux kernel was developed by a college student at the
University of Helsinki named Linus Torvalds. Linus took a C
and UNIX class in the fall of 1990 and got really interested in
UNIX. He bought Andy Tanenbaum's book on Minix, bought
a 386 laptop and, in early 1991, installed Minix on that sys-
tem.
 Linus quickly figured out that Minix wasn't what he wanted
and started developing his own UNIX-like kernel. By using
a C compiler and other utilities developed by the Free Soft-
ware Foundation, Linus was able to put together a rudimen-
tary UNIX-like system by January, 1992. Since that time the
Linux effort has grown from the work of Linus Torvalds and
a few friends into an international movement involving hun-
dreds and possibly thousands of developers and tens of thou-
sands of users.
 What makes this effort unique is that all the development is
done in public view, for free by people spread all over the
world. This sort of effort has been possible because these
people use the Internet to exchange information. Cooperation

Page 25

has been on such a level that when someone found out that
Linus was still making payments on his laptop, they decided
to take up a collection — over the Internet, of course — to
raise money to pay off his system.

The Development Effort
 The best way to describe Linux development is a success-
ful implementation of Communism. No, this isn't a political
statement. The dictionary definition of Communism is "from
each according to his ability, to each according to his need".
This is what is happening with Linux. High-powered soft-
ware engineers and programmers from different backgrounds
in different countries are chipping in to write the parts of
Linux they understand — from Ethernet card drivers to doc-
umentation. The result is a large-scale, commercial quality
effort with no staff costs, no office costs and no marketing
or distribution costs.
 Because development is done in the open anyone can re-
quest a feature or point out a bug and the developer can
directly respond. The result is that new software is being
written at break-neck speed and bugs are being fixed in a
matter of days instead of months or possibly years.
 For example, last year someone posted a message to
Usenet asking if Linux supported a floptical disk. (This is a
disk that has a SCSI interface and supports a 20MB remov-
able disk the size of a 3.5" floppy.) Within hours a followup
message was posted that pointed out that such disk drives
needed to be sent a special initialization sequence. The next
followup was from the SCSI driver developer asking if any-
one knew what that special sequence was. A couple of days
later the developer posted a message pointing out that he had
added the required code to the SCSI driver.

What do you get with Linux?
 This is where most dyed-in-the-wool UNIX users expect
Linux to fall short. But, it doesn't. Linux includes all the
networking, development, graphics and device support of
virtually any commercial version of UNIX and then some.
 The reality is that you can get a complete UNIX-like sys-
tem including everything you would expect in a commercial
package with all the extras including editors, compilers,
development software, text processing systems, shells, data-
base systems, electronic mail and news, networking, com-
munications programs, the X-Windows graphics system and
even an assortment of games for close to nothing. Virtually
all of the standard UNIX utilities come from the GNU pro-
ject, an effort of the Free Software Foundation.
 There are various vendors that package the Linux kernel
with other freely re-distributable software. Packages vary in
size from seven floppy disks to a CD-ROM chock-full of
software. The prices of these packages vary from free to
around $50 and are, themselves, freely re-distributable.

Is it Reliable?
 It depends on who you ask. Opinions vary all over the map.
But I can explain why. People who try every new Alpha re-
lease will have problems with reliability. And, unlike com-
mercial ventures where bugs tend to be hidden behind market-
ing hype, everyone reading the Linux newsgroups on the
Internet quickly finds out about any bugs. Rather than justify,
let me just speak from personal experience.
 In my "home office" which is now the editorial office for
Linux Journal as well as for my consulting business, I have
had a UNIX-based system for about 4 years. Up until last year
it was based on AT&T System V, Release 3.2. It was running
on a 386 system and proved to be reliable. Only a couple of
bugs could cause an occasional crash.
 Last year I replaced this system with a Linux system be-
cause I wanted support for long file names and larger disks.
And, I wanted Network File System (NFS) and this would
cost hundreds of dollars for my System V system. We now
have three computers networked together. Two computers run
Linux all the time and one runs either Linux or MS-DOS.
They all talk over Ethernet. NFS works fine.
 The only reason I have had to reboot any of the systems is
because of a bug in the serial I/O driver which causes a port
to hang occasionally under heavy use. (The system has three
modems on it, talking to them at 38,400 bps.) This bug was
first noticed a couple of weeks before a patch came out to
correct it. I just haven't had the time to install the patch.
 This bug is very similar to one that one of my clients has
with their "commercial" UNIX system. The difference is that
the two vendors involved (the communications board man-
ufacturer and the UNIX vendor) both deny that they could
possibly have such a bug. So it still exists in their "commer-
cial" system after three years, two operating system upgrades
and countless communications board software releases.

Is a Commercial Future Possible for Linux?
 The short answer is yes. Even though Linux is free, it will
make lots of money for lots of people. Here is why.
 First, to run Linux you need a computer. Offered the chance
to have a real UNIX-like operating system at home for free
many people will elect to either purchase a computer or up-
grade a current system to support it. Thus, hardware will be
purchased because Linux is available.
 Second, some companies will elect to use multiple Linux
systems as an alternative to either a single computer and
dumb terminals or a single computer and X-terminals. And,
in some cases, Linux will replace more expensive work-
stations.
 An example is one company where I have consulted. Their
initial requirements were fairly simple. Three to five local
users plus a couple of modem lines. The users would either be
using a database or using standard UNIX editing and publish-
ing tools. The solution was also fairly simple and consisted of

Page 26

a 386-based system running SCO Xenix and a few dumb
terminals.
 But, today, their requirements have grown. They need
more horsepower and they need graphics capabilities at two
of the desktops. To meet these requirements with traditional
answers would require the purchase of at least two more
copies of the UNIX or Xenix operating system, networking
software, and X-windows software as well as the additional
hardware. Such a purchase is beyond the budget of the com-
pany so they continue to limp along with their current con-
figuration.
 If, instead, Linux is offered as an alternative, a solution
can be found. Linux is freely copyable so the operating sys-
tem cost is almost zero. And Linux includes both the needed
networking software (NFS and TCP/IP) and X-windows.
This means that other than having to purchase an upgrade for
Xenix to add the networking, all the upgrade budget can be
reserved for the purchase of the necessary hardware.
 The difference here is that with the Linux solution, the
customer got what they needed — a system up-grade — and
the computer industry, as a whole, came out ahead because
new equipment was, in fact, purchased. Thus, what is called
"free software" made money for some and solved the prob-
lems of others.
 Finally, with a free operating system, some software devel-
opers will port their applications to this new platform mak-
ing it possible for people to purchase the application. With-
out the free operating system the computerized solution
could have been out of reach financially.

The Future
 I see an interesting future for Linux. First, it will remain a
hacker's system for some. They will get the source code, play
with it and, in the process, learn a lot about computers and
operating systems. For them, whether it is an individual
effort or through a school, Linux will be the tool needed to
pave the way into a successful career in computing.
 Some of these hackers and some computer professionals
will see Linux as a tool to develop a solution that otherwise
couldn't be done. Interfacing Linux to a voice mail board or
any other special hardware is simple. If the hardware fits in
an ISA or EISA-bus slot and you have hardware documenta-
tion you can write a driver and integrate it into the Linux
system. In fact, this is happening every day with new sound
boards, new SCSI disk controllers and new Ethernet cards.
Other hackers will probably become computer consultants.
 Having all of Linux available to anyone means that you
could do serious consulting in your own home town instead
of having to move to the home of the developers of the soft-
ware.
 Linux can and has replaced X terminals. An X terminal is
a graphical terminal that is designed to talk to a host com-
puter running as an X-windows server. As Linux comes with
the necessary X client software as well as the necessary
networking code (TCP/IP) Linux can easily do the task.
Thus an expensive, special-purpose terminal can be replaced
with common, inexpensive PC hardware.

 Linux includes both TCP/IP networking and the Network
File System. This means Linux can offer connectivity and
server capabilities to other systems at a very low cost. For
example, a PC running DOS and/or MS-Windows can be
cheaply added to a network of Linux (and UNIX) systems.
This is because it is only necessary to add an ethernet card
and the networking software (such as Sun's PC-NFS) to the
single PC. There is no networking cost associated with the
Linux systems.
 Development continues on a program called Wine. Wine is
software that will allow MS-Windows based applications to
run on Linux systems. Rather than either emulate MS-
Windows or just allow Linux to act as a platform for running
MS-Windows, Wine runs MS-Windows applications directly
by translating calls from the applications for MS-Windows
services into their X-windows equivalents. While Wine is still
being developed, its future looks promising. Because of its
design, people will not have to purchase MS-Windows to use
it. Further, it has all the potential to run as fast, or faster, than
MS-Windows on the same computer hardware.
 Interested in connecting to the Internet? Many people have
Internet access by using their PC as a terminal and dialing up
a local service provider. [A growing number of freenets are
available without charge —ed] Many of these same service
providers offer both uucp and SLIP connections. [Also there
are free uucp connections available in some areas —ed]
Linux include both uucp, the standard UNIX-to-UNIX com-
munications program and SLIP, a TCP/IP-like protocol de-
signed to allow connections over dial-up serial lines. Thus,
with a Linux system you can be one step closer to the Internet
by establishing a uucp account. Or you could connect your
Linux machine directly to the Internet by establishing a SLIP
account.
 For the casual user who wants to know more about multi-
user systems or for the mainframe COBOL programmer who
has heard about UNIX and C and wants to get his or her feet
wet, Linux offers a virtually no-cost way to test the waters. In
computing, the way to learn something new is to give it a try.
For anyone who currently has a reasonable sized PC, Linux
can be installed on a partition on an existing disk and you
have your own personal UNIX (Linux) system to use as a
learning tool.
 Where does this lead? Does Linux replace every personal
computer and every UNIX system in the world? In a word,
no. But it does offer an alternative to other commercial sys-
tems, a stepping stone for some and a cost effective solution
for many more.

Copyright 1994, Phil Hughes. Parts of this article appeared in
the March, 1994 issue of Puget Sound Computer User.

Page 27

The Ten Commandments for
C Programmers

 (Annotated Edition)
by Henry Spencer

[Editor's Note: One of the important advances of UNIX was
when it was recoded in C and thus became portable (not
dependent on any particular computer hardware). Thus it
seems appropriate to include Henry Spencer's "Ten Com-
mandments" article on C as part of the commemoration of
UNIX.]

1. Thou shalt run lint frequently and study its pro-
nouncements with care, for verily its perception and
judgement oft exceed thine.

This is still wise counsel, although many modern
compilers search out many of the same sins, and
there are often problems with lint being aged and
infirm, or unavailable in strange lands. There are
other tools, such as Saber C, useful to similar
ends.
"Frequently" means thou shouldst draw thy daily
guidance from it, rather than hoping thy code will
achieve lint's blessing by a sudden act of repen-
tance at the last minute. De-linting a program
which has never been linted before is often a
cleaning of the stables such as thou wouldst not
wish on thy worst enemies. Some observe, also,
that careful heed to the words of lint can be quite
helpful in debugging.
"Study" doth not mean mindless zeal to eradicate
every byte of lint output for — if no other reason,
because thou just canst not shut it up about some
things — but that thou should know the cause of
its unhappiness and understand what worrisome
sign it tries to speak of.

2. Thou shalt not follow the NULL pointer, for
chaos and madness await thee at its end.

Clearly the holy scriptures were mis-transcribed
here, as the words should have been "null
pointer", to minimize confusion between the con-
cept of null pointers and the macro NULL (of
which more anon). Otherwise, the meaning is
plain. A null pointer points to regions filled with
dragons, demons, core dumps, and numberless
other foul creatures, all of which delight in frol-
icking in thy program if thou disturb their sleep.
A null pointer doth not point to a 0 of any type,
despite some blasphemous old code which impi-

ously assumes this.

3. Thou shalt cast all function arguments to the ex-
pected type if they are not of that type already, even
when thou art convinced that this is unnecessary,
lest they take cruel vengeance upon thee when thou
least expect it.

A programmer should understand the type structure
of his language, lest great misfortune befall him.
Contrary to the heresies espoused by some of the
dwellers on the Western Shore, 'int' and 'long' are
not the same type. The moment of their equivalence
in size and representation is short, and the agony
that awaits believers in their interchangeability
shall last forever and ever once 64-bit machines
become common.
Also, contrary to the beliefs common among the
more backward inhabitants of the Polluted Eastern
Marshes, 'NULL' does not have a pointer type, and
must be cast to the correct type whenever it is used
as a function argument.
(The words of the prophet Ansi, which permit
NULL to be defined as having the type 'void *', are
oft taken out of context and misunderstood. The
prophet was granting a special dispensation for use
in cases of great hardship in wild lands. Verily, a
righteous program must make its own way through
the Thicket Of Types without lazily relying on this
rarely-available dispensation to solve all its prob-
lems. In any event, the great deity dmr who created
C hath wisely endowed it with many types of point-
ers, not just one, and thus it would still be necessary
to convert the prophet's NULL to the desired type.)
It may be thought that the radical new blessing of
"prototypes" might eliminate the need for caution
about argument types. Not so, brethren. Firstly,
when confronted with the twisted strangeness of
variable numbers of arguments, the problem returns
... and he who has not kept his faith strong by re-
peated practice shall surely fall to this subtle trap.
Secondly, the wise men have observed that reliance
on prototypes doth open many doors to strange er-
rors, and some indeed had hoped that prototypes
would be decreed for purposes of error checking
but would not cause implicit conversions. Lastly,
reliance on prototypes causeth great difficulty in
the Real World today, when many cling to the old
ways and the old compilers out of desire or neces-
sity, and no man knoweth what machine his code
may be asked to run on tomorrow.

Page 28

4. If thy header files fail to declare the return types
of thy library functions, thou shalt declare them
thyself with the most meticulous care, lest grievous
harm befall thy program.

The prophet Ansi, in her wisdom, hath added that
thou shouldst also scourge thy Suppliers, and de-
mand on pain of excommunication that they pro-
duce header files that declare their library func-
tions. For truly, only they know the precise form
of the incantation appropriate to invoking their
magic in the optimal way.
The prophet hath also commented that it is un-
wise, and leads one into the pits of damnation and
subtle bugs, to attempt to declare such functions
thyself when thy header files do the job right.

5. Thou shalt check the array bounds of all strings
(indeed, all arrays), for surely where thou typest
"foo" someone someday shall type "supercali-
fragilisticexpialidocious".

As demonstrated by the deeds of the Great Worm,
a consequence of this commandment is that robust
production software should never make use of
gets(), for it is truly a tool of the Devil. Thy inter-
faces should always inform thy servants of the
bounds of thy arrays, and servants who spurn such
advice or quietly fail to follow it should be dis-
patched forthwith to the Land Of rm, where they
can do no further harm to thee.

6. If a function be advertised to return an error
code in the event of difficulties, thou shalt check for
that code, yea, even though the checks triple the
size of thy code and produce aches in thy typing
fingers, for if thou thinkest "it cannot happen to
me", the gods shall surely punish thee for thy arro-
gance.

All true believers doth wish for a better
error-handling mechanism, for explicit checks of
return codes are tiresome in the extreme and the
temptation to omit them is great. But until the
far-off day of deliverance cometh, one must walk
the long and winding road with patience and care,
for thy Vendor, thy Machine, and thy Software
delight in surprises and think nothing of producing
subtly meaningless results on the day before thy
Thesis Oral or thy Big Pitch To The Client.
Occasionally, as with the ferror() feature of stdio,
it is possible to defer error checking until the end

when a cumulative result can be tested, and this
often produceth code which is shorter and clearer.
Also, even the most zealous believer should exer-
cise some judgement when dealing with functions
whose failure is totally uninteresting ... but beware,
for the cast to void is a two-edged sword that
sheddeth thine own blood without remorse.

7. Thou shalt study thy libraries and strive not to
re-invent them without cause, that thy code may be
short and readable and thy days pleasant and pro-
ductive.

Numberless are the unwashed heathen who scorn
their libraries on various silly and spurious
grounds, such as blind worship of the Little Tin
God (also known as "Efficiency"). While it is true
that some features of the C libraries were
ill-advised, by and large it is better and cheaper to
use the works of others than to persist in re-
-inventing the square wheel. But thou should take
the greatest of care to understand what thy libraries
promise, and what they do not, lest thou rely on
facilities that may vanish from under thy feet in
future.

8. Thou shalt make thy program's purpose and
structure clear to thy fellow man by using the One
True Brace Style, even if thou likest it not, for thy
creativity is better used in solving problems than in
creating beautiful new impediments to understand-
ing.

These words, alas, have caused some uncertainty
among the novices and the converts, who knoweth
not the ancient wisdoms. The One True Brace Style
referred to is that demonstrated in the writings of
the First Prophets, Kernighan and Ritchie. Often
and again it is criticized by the ignorant as hard to
use, when in truth it is merely somewhat difficult
to learn, and thereafter is wonderfully clear and
obvious, if perhaps a bit sensitive to mistakes.
While thou might think that thine own ideas of
brace style lead to clearer programs, thy successors
will not thank thee for it, but rather shall revile thy
works and curse thy name, and word of this might
get to thy next employer. Many customs in this life
persist because they ease friction and promote pro-
ductivity as a result of universal agreement, and
whether they are precisely the optimal choices is
much less important. So it is with brace style.
As a lamentable side issue, there has been some

Page 29

unrest from the fanatics of the Pronoun Gestapo
over the use of the word "man" in this
Commandment, for they believe that great efforts
and loud shouting devoted to the ritual purifica-
tion of the language will somehow redound to the
benefit of the downtrodden (whose real and griev-
ous woes tendeth to get lost amidst all that thun-
der and fury). When preaching the gospel to the
narrow of mind and short of temper, the word
"creature" may be substituted as a suitable
pseudo-Biblical term free of the taint of Political
Incorrectness.

9. Thy external identifiers shall be unique in the
first six characters, though this harsh discipline be
irksome and the years of its necessity stretch be-
fore thee seemingly without end, lest thou tear thy
hair out and go mad on that fateful day when thou
desirest to make thy program run on an old sys-
tem.

Though some hasty zealots cry "not so; the
Millennium is come, and this saying is obsolete
and no longer need be supported", verily there be
many, many ancient systems in the world, and it is
the decree of the dreaded god Murphy that thy
next employment just might be on one. While thou
sleepest, he plotteth against thee. Awake and take
care.
It is, note carefully, not necessary that thy identifi-
ers be limited to a length of six characters. The
only requirement that the holy words place upon
thee is uniqueness within the first six. This often
is not so hard as the belittlers claimeth.

10. Thou shalt foreswear, renounce, and abjure the
vile heresy which claimeth that "All the world's a
VAX", and have no commerce with the benighted
heathens who cling to this barbarous belief, that
the days of thy program may be long even though
the days of thy current machine be short.

This particular heresy bids fair to be replaced by
"All the world's a Sun" or "All the world's a 386"
(this latter being a particularly revolting invention of
Satan), but the words apply to all such without limi-
tation. Beware, in particular, of the subtle and terri-
ble "All the world's a 32-bit machine", which is al-
most true today but shall cease to be so before thy
resume grows too much longer.

May Day in the Morning
by Floyd Hoke-Miller

[Editor's Note: the promise of UNIX and of automation is the
promise of a shorter workday for all. Since May Day is the
holiday celebrating the 200 year struggle to shorten the work-
ing day, we include this poem in honor of May Day in this
special issue.]

Awake my fellow workers, it's May Day and it's spring;
Let's celebrate its meaning and what our might could bring.

Let not your hearts be troubled, you're master of your fate;
So plan to use the things you've made and paradise create.

Clear the cobwebs from your mind the master class has spun
Through centuries of directing all the things you've done.

Arise you sons of toil and brush your brows of sweat
And look towards the horizon of things the OBU would get.

See how the world has prospered and who enjoys its good
Then cross your hearts forever to form one brotherhood.

[Note: The OBU (pronounced Oh Be You) is the One Big
Union that the Industrial Workers of the World (the IWW or
Wobblies) seek as the proper workers' organization.]

Some of the more than 500 poems that Floyd Hoke-Miller
wrote are collected in the book A Laborer Looks at Life,
Then and Now, Poems from the Shop Floor, Flint, Mi, 1984.

What is the Free Software Foundation?

[Editor's Note: The following is reprinted from GNU's Bul-
letin, June, 1993.]

 The Free Software Foundation is dedicated to eliminating
restriction on people's abilities and rights to copy, redistrib-
ute, understand, and modify computer programs. We do this
by promoting the development and use of free software in all
areas of computer use. Specifically, we are putting together
a complete integrated software system named "GNU"
(GNU'S Not UNIX) (pronounced "guh-new") that will be
upwardly compatible with UNIX. Most parts of this system
are already working, and we are distributing them now.
 The word "free" in our name pertains to freedom, not
price. You may or may not pay money to get GNU software.
Either way, you have two specific freedoms once you have

Page 30

ELECTRONIC EDITION AVAILABLE

Starting with vol 4, no 2-3, The*Amateur Computerist
has become available via electronic mail. To obtain a
copy, send E–mail to: au329@cleveland.freenet.edu
or: ae547@yfn.ysu.edu
Also, The Amateur Computerist is now available via
anonymous FTP: wuarchive.wustl.edu
It is stored in the directory: /doc/misc/acn

EDITORIAL STAFF

Ronda Hauben
William Rohler

Norman O. Thompson
Michael Hauben

Jay Hauben

The Amateur Computerist invites contribution of
letters, programs etc. Send submissions to: R. Hauben
P.O. Box 4344, Dearborn, Mi 48126. Articles can be
accepted on paper or disk in ASCII format, IBM or via
e–mail. One year subscription (4 issues) costs $10.00
(US). Add $2.50 for foreign postage. Make checks
payable to R. Hauben. Permission is given to reprint
articles from this issue in a non profit publication pro-
vided credit is given, with name of author and source
of article cited, and a copy of the publication is sent to
The Amateur Computerist newsletter.

the software: first, the freedom to copy the program and
give it away to your friends and co-workers; and second,
the freedom to change the program as you wish, by having
full access to source code. Furthermore, you can study the
source and learn how such programs are written. You may
then be able to port it, improve it and share your changes
with others. If you redistribute GNU software, you may
charge a fee for the physical act of transferring a copy, or
you may give away copies.
 Other organizations distribute whatever free software
happens to be available. By contrast, the Free Software
Foundation concentrates on development of new free soft-
ware, working towards a GNU system complete enough to
eliminate the need for you to purchase a proprietary system.

WHAT IS COPYLEFT?

 The simplest way to make a program free is to put it in
the public domain, un-copyrighted. But this allows anyone
to copyright and restrict its use against the author's wishes,
thus denying others the right to access and freely redistrib-
ute it. This completely perverts the original intent.
 To prevent this, we copyright our software in a novel
manner. Typical software companies use copyrights to take
away your freedoms. We use the copyleft to preserve them.
It is a legal instrument that requires those who pass on the
program to include the right to further redistribute it, and to
see and change the code; the code and the right become
legally inseparable.
 The copyleft used by the GNU Project is made from a
combination of a regular copyright notice and the GNU
General Public License (GPL). The GPL is a copying li-
cense which basically says that you have the freedoms dis-
cussed above. An alternate form, the GNU Library General
Public License (LGPL), applies to certain GNU Libraries.
This license permits linking the libraries into proprietary
executables under certain conditions. The appropriate li-
cense is included in all GNU source code distributions and
in many of our manuals. We will also send you a printed
copy upon request.

Free Software Foundation, Inc.
675 Massachusetts. Ave.
Cambridge, MA 02139 USA

E-mail: gnu@prep.ai.mit.edu

